
An SMT-Based Concolic Testing Tool
for Logic Programs

(System Description)

Sophie Fortz1, Fred Mesnard2, Etienne Payet2, Gilles Perrouin1, Wim
Vanhoof1, and German Vidal3

1 Université de Namur, Belgique
2 LIM - Université de la Réunion, France

3 MiST, DSIC, Universitat Politècnica de València

Abstract. Concolic testing mixes symbolic and concrete execution to
generate test cases covering paths effectively. Its benefits have been
demonstrated for more than 15 years to test imperative programs. Other
programming paradigms, like logic programming, have received less at-
tention. In this paper, we present a concolic-based test generation method
for logic programs. Our approach exploits SMT-solving for constraint res-
olution. We then describe the implementation of a concolic testing tool
for Prolog and validate it on some selected benchmarks.

Keywords: Concolic Testing · Logic Programming · SAT/SMT solving.

1 Introduction

Concolic testing is a well-established validation technique for imperative and
object-oriented programs [5,6,12]. However, it has been less explored in the con-
text of functional and logic programming languages. This is particularly unfor-
tunate since it is becoming increasingly popular to compile programs in other
programming languages to either a functional or a logic formalism. The main
advantage of this approach is that so-called declarative programs have a sim-
pler semantics and are thus much more appropriate for analysis, verification,
validation, etc. In particular, Constraint Horn clauses (i.e., logic programs with
constraints) are gaining popularity as an intermediate language for verification
engines (see, e.g., [2,4]). In this context, it is unfortunate that there are no
powerful concolic testing tools for logic programming languages. We thus aim
at improving this situation with the design and implementation of an efficient
SMT-based concolic testing tool for logic programs.

A notable exception in this context is the work on concolic testing developed
by Mesnard, Payet and Vidal [14,9], later extended in [10,11]. Let us illustrate
this approach with a simple example.

Example 1. Consider the following logic program:

(`1) p(a).
(`2) p(s(X))← q(X).
(`3) q(a).

ar
X

iv
:2

00
2.

07
11

5v
1

 [
cs

.L
O

]
 1

7
Fe

b
20

20

2 S. Fortz et al.

where `1, `2, `3 are (unique) clause labels.
The notion of coverage in [9] requires considering test cases so that the clauses

defining each predicate are unified in all possible ways. For instance, in this
example, we aim at producing a call to predicate p/1 that unifies with no clause,
another one that unifies only with the head of `1, another one that unifies only
with the head of `2, and another one that unifies with both the heads of `1 and
`2.

For this purpose, an (iterative) process starts with an arbitrary test case (an
atomic goal), e.g., p(a). We then evaluate in parallel both p(a) (the concrete
goal) and p(X) (the symbolic goal), where X is a fresh variable, using a concolic
execution extension of SLD resolution. Two key points of concolic execution
are that not all nondeterministic executions of p(X) are explored (but only
those that corresponds to the executions of the concrete goal p(a)), and that we
record the clauses unifying with both the concrete and the symbolic goal at each
resolution step (in order to compute alternative test cases).

Now, in order to look for alternative test cases, [9] introduces the notion of
selective unification problem: given an atom A, sets of clauses H+ and H−, and
a set of variables G ⊆ Var(A), find a substitution σ such that i) Aσ unifies with
the heads of the clauses in H+, ii) it does not unify with the heads of the clauses
in H−, and iii) Gσ becomes ground. In this example, p(a) only unifies with
clause `1, while p(X) unifies with both `1 and `2. Therefore, one now considers
the following missing cases:

– an instance p(X)σ of p(X) for some substitution σ such that p(X)σ unifies
no clause, e.g., p(b);

– another instance that unifies both `1 and `2 (unfeasible if we want the argu-
ment of p to be ground);

– and one more instance that unifies only `2, e.g., p(s(a)).

Each case is formalized as a selective unification problem and then solved using
a specific algorithm.4 Now, we add the two new test cases, p(b) and p(s(a)), and
then repeat the process until no new test cases are added.

We note that, in the example above, only positive constraints are considered
(which are denoted by means of substitutions). However, negative constraints
(such as, e.g., X 6= a) cannot be expressed in the framework of [9].

Actually, the approach in [9] suffers from some limitations. On the one hand,
the algorithms for solving the unification problems above are computationally
very expensive, which makes this approach impractical for large programs. On
the other hand, the process is, in some cases, unnecessarily incomplete because
of the lack of negative information, as witnessed by the following example:

Example 2. Consider now the following logic program:

(`1) p(a).
(`2) p(X)← q(X).
(`3) q(b).

4 More details on selective unification can be found in [10,11].

An SMT-Based Concolic Testing Tool for Logic Programs 3

Given the initial call p(a), the first alternative test case computed by the ap-
proach of [9] is p(b) which only unifies the second clause. Now, p(b) is unfolded
to q(b), which succeeds. The next computed test case is then p(X)σ where σ
binds X to any term different from b so that q(X)σ fails (since test cases for
failures are also required). However, it does not take into account the fact that
X must be different to a in p(a) in order to reach q(a) since negative constraints
cannot be represented within the framework of [9]. Hence, one could generate
p(a) so that concolic testing stops because p(a) was already considered. The gen-
erated test cases are then p(a) and p(b). With the intended coverage definition,
though, one would also expect a test case like p(c) which is first unfolded using
the second clause and then fails. Therefore, the concolic testing framework of [9]
is unnecessarily incomplete here.

In this paper, we design an improved concolic testing scheme that is based on
[9] but adds support for negative constraints (so that the source of incomplete-
ness shown in the example above is removed) and defines selective unification
problems as constraints on Herbrand terms, so that an efficient SMT solver can
be used (in contrast to [10,11]). We have implemented an SMT-based concolic
testing tool for Prolog based on this design, where the SMT solver Z3 [3] is used
to solve selective unification problems. A preliminary experimental evaluation
has been conducted, which shows encouraging results in terms of execution time
and scalability.

2 A Deterministic Operational Semantics

In this section, we recall a deterministic operational semantics for definite logic
programs (i.e., logic programs without negation [8]). In particular, we consider
the semantics in [9] which, in turn, follows the local operational semantics of
[13], where backtracking is dealt with explicitly. Moreover, the semantics only
considers the computation of the first answer for the initial goal. This is a design
decision motivated by the fact that Prolog programs are often used in this way,
so that one can measure the achieved coverage in a realistic way.

We refer the reader to [1] for the standard definitions and notations for logic
programs. The semantics is defined by means of a transition system on states
of the form 〈B1δ1 | . . . | B

n
δn
〉, where B1δ1 | . . . | B

n
δn

is a sequence of goals labeled
with substitutions (the answer computed so far, when restricted to the variables
of the initial goal). We denote sequences with S, S′, . . ., where ε denotes the
empty sequence. In some cases, we label a goal B both with a substitution and
a program clause, e.g., BH←Bδ , which is used to determine the next clause to be
used for an SLD resolution step (see rules choice and unfold in Figure 1). Note
that the clauses of the program are not included in the state but considered
as global parameters since they are static. In the following, given an atom A
and a logic program P , clauses(A,P) returns the sequence of renamed apart
program clauses c1, . . . , cn from P whose head unifies with A. A syntactic object
s1 is more general than a syntactic object s2, denoted s1 6 s2, if there exists

4 S. Fortz et al.

(success) 〈trueδ |S〉 → 〈successδ〉

(failure) 〈(fail,B)δ〉 → 〈failδ〉
(backtrack)

S 6= ε

〈(fail,B)δ |S〉 → 〈S〉

(choice)
clauses(A,P) = (c1, . . . , cn) ∧ n > 0

〈(A,B)δ |S〉 → 〈(A,B)c1δ | . . . |(A,B)cnδ |S〉
(choice fail)

clauses(A,P) = {}
〈(A,B)δ |S〉 → 〈(fail,B)δ |S〉

(unfold)
mgu(A,H1) = σ

〈(A,B)H1←B1
δ |S〉 → 〈(B1σ,Bσ)δσ |S〉

Fig. 1. Concrete semantics

a substitution θ such that s1θ = s2. Var(o) denotes the set of variables of the
syntactic object o. For a substitution θ, Var(θ) is defined as Dom(θ) ∪ Ran(θ),
where Dom and Ran return the variables in the domain and range of a given
substitution, respectively.

For simplicity, w.l.o.g., we only consider atomic initial goals. Therefore, given
an atom A, an initial state has the form 〈Aid〉, where id denotes the identity
substitution. The transition rules, shown in Figure 1, proceed as follows:

– In rules success and failure, we use constant successδ to denote that a suc-
cessful derivation ended with computed answer substitution δ, while failδ de-
notes a finitely failing derivation; recording δ for failing computations might
be useful for debugging purposes.

– Rule backtrack applies when the first goal in the sequence finitely fails, but
there is at least one alternative choice.

– Rule choice represents the first stage of an SLD resolution step. If there
is at least one clause whose head unifies with the leftmost atom, this rule
introduces as many copies of a goal as clauses returned by function clauses.
If there is at least one matching clause, unfolding is then performed by rule
unfold. Otherwise, if there is no matching clause, rule choice fail returns fail
so that either rule failure or backtrack applies next.

Example 3. Consider the following logic program:

p(a). q(a). r(a).
p(s(X))← q(X). q(b). r(c).
p(f(X))← r(X).

An SMT-Based Concolic Testing Tool for Logic Programs 5

Given the initial goal p(s(X)), we have the following successful computation (for
clarity, we label each step with the applied rule):5

〈p(s(X))id〉 →choice 〈p(s(X))
p(s(X))←q(X)
id 〉 →unfold 〈q(X)id〉

→choice 〈q(X)
q(a)
id |q(X)

q(b)
id 〉 →unfold 〈true{X/a} |q(X)

q(b)
id 〉

→success 〈success{X/a}〉

Therefore, we have a successful computation for p(s(X)) with computed answer
{X/a}. Observe that only the first answer is considered.

3 An SMT-Based Concolic Testing Procedure

In this section, we present our scheme to concolic testing of logic programs. Our
concolic testing semantics performs both concolic execution and test case gen-
eration, which contrasts to [9] where they are kept as two independent stages.
Moreover, it collects both positive and negative constraints on the input vari-
ables, so that it overcomes an important limitation of previous approaches (as
explained in Section 1) and opens the door to making the overall process much
more efficient by using a state-of-the-art SMT solver.

3.1 Auxiliary Functions and Notations

Let us first introduce some auxiliary definitions and notations which are required
in the remainder of this section.

In the following, we let on denote the sequence of syntactic objects o1, . . . , on;
we also write o when the number of elements is not relevant. Given an atom A,
we let root(A) = p/n if A = p(tn). We also assume that every clause c has
a corresponding unique label, which we denote by `(c). By abuse of notation,
we also denote by `(cn) the set of labels {`(c1), . . . , `(cn)}. Moreover, we let
hd(H ← B) = H and hd(C) = {hd(c) | c ∈ C}, where H ← B is a clause and C
is a set of clauses.

We now introduce the auxiliary functions neg constr and alts. First, function
neg constr is used to compute some negative constraints which will become
useful to avoid the problem shown in Example 2.

Definition 1 (neg constr). Let A be an atom, G ⊆ Var(A) a set of variables,
and {Hn}, n > 0, a set of atoms with Var({Hn}) ∩ Var(A) = {}. Then,

neg constr(A, {Hn}, G) = ∀Xk1A 6= H1 ∧ . . . ∧ ∀XknA 6= Hn

where Xki = (Var(A) \G) ∪ Var(Hi), i = 1, . . . , n.

5 Note that a fact like “q(a).” is equivalent to a rule “q(a) ← true.” and, thus, the
unfolding of q(X) returns true in the considered derivation.

6 S. Fortz et al.

For example, we have

neg constr(p(X,Y), {p(a,W)}, {X}) = ∀Y,W p(X,Y) 6= p(a,W)

Function alts is used to encode a selective unification problem using both positive
and negative constraints: Intuitively, given a call of the form alts(A0, γ, A

′,B,B′, G),
we are interested in new test cases that unify with each atom in each set of P(B′)6
except for the set B which is already covered by the current concrete goal (i.e.,
we do not want to produce an alternative test case that matches exactly the
same clauses as the current test case that we are executing). Then, for each set
H+ ∈ P(B′) (the positive clauses) with H− = B′ \ H+ (the negative clauses),
we look for a substitution σ such that A′σ unifies with the atoms in H+ but it
does not unify with the atoms in H−, while still grounding the variables in G.
For each such substitution, we produce a new test case A0σ. Formally,

Definition 2 (alts). Let A0, A
′ be atoms, B,B′ sets of atoms with Var(B,B′)∩

Var(A′) = {}, γ a (negative) constraint, and G ⊆ Var(A0) a set of variables.
Then, we have

alts(A0, γ, A
′,B,B′, G) =

A0σ

∣∣∣∣∣∣∣∣∣
H+ ∈ P(B′), H+ 6= B,

H− = B′ \H+,

α(A′, γ,H+, H−, G) = σ

where function α(A′, γ,H+, H−, G) returns a solution to the following constraint
(represented as a substitution):7γ ∧ ∃Xn1(A′ = H1) ∧ . . . ∧ ∃Xnj (A′ = Hj)

∧ ∀Yn1(A′ 6= H ′1) ∧ . . . ∧ ∀Ynk
(A′ 6= H ′k)

with H+ = {Hj}, H− = {H ′k}, Xni = (Var(A′) \ G) ∪ Var(Hi), i = 1, . . . , j,
and Yni = (Var(A′) \ G) ∪ Var(H ′i), i = 1, . . . , k. Here, we look for a solution
for the free variables of the above constraint: Var(A′) ∩G.

For example, we have

alts(p(X), p(X) 6= p(a), q(X), {}, {q(b)}, {X}) = {p(c)}

since

α(q(X), p(X) 6= p(a), {}, {q(b)}, {X}) = ∃X(p(X) 6= p(a) ∧ q(X) 6= q(b))

and the selected solution is X = c represented as a substitution {X/c}, where c
is an arbitrary constant which is different from the previous ones (a and b).

6 Here, we denote by P(C) the powerset of a set C.
7 Function α returns an arbitrary solution when the considered constraint is satisfiable

and fails otherwise.

An SMT-Based Concolic Testing Tool for Logic Programs 7

3.2 Concolic Testing Semantics

Let us now consider our concolic testing semantics. In this work, we consider that
the initial goal is terminating for a given mode, which is a reasonable assumption
since non-terminating test cases are not very useful in practice. Essentially, a
mode is a function that labels as “input” or “output” the arguments of a given
predicate, so that input arguments are assumed to be ground at call time, while
output arguments are usually unbound (see, e.g., [1]). Here, we assume a fixed
mode for the predicate in the initial (atomic) goal. Different modes can also
be considered by performing concolic testing once for each mode of interest.
Therefore, our test cases should make the input arguments ground (to ensure
terminating concrete executions). For clarity, we assume in the remainder of
this paper that all input arguments (if any) are in the first consecutive positions
of an atom. Moreover, given a predicate p/n with input arguments {1, . . . ,m},
m ≤ n, we let varin(p(tn)) = Var(t1) ∪ . . . ∪ Var(tm), i.e., the variables in the
input positions, and outvars(p(tn)) = p(tm, Xm+1, . . . , Xn), i.e., the atom that
results from replacing the output arguments by distinct fresh variables.

In the concolic testing semantics, concolic states have now the form 〈S][S′〉,
where S and S′ are sequences of (possibly labeled) concrete and symbolic goals,
respectively. In the context of logic programming, the notion of symbolic execu-
tion is very natural: the structure of both S and S′ is the same, and the only
difference (besides the labeling) is that some atoms might be less instantiated in
S′ than in S. To be precise, symbolic goals in a concolic state are now labeled
as follows: Bσ,π,A0,γ,G, where

– σ is the substitution computed so far;
– π is the current trace8 (which is required to avoid considering the same

computations once and again);
– A0 is the initial atomic goal (which is required to compute alternative test

cases in function alts);
– γ is a (negative) constraint that allows us to avoid unification with the heads

of some clauses (to avoid the problem shown in Example 2);
– G is the set of variables that must be ground in test cases (i.e., the variables

in the input arguments of the initial atomic goal).

Our concolic testing semantics considers two global parameters that are left im-
plicit in the transition rules: Traces and TestCases. The first one, Traces, is used
to store the already explored execution traces, so that we avoid computing the
same test cases once and again. Here, a trace represents a particular execution
by the sequence of clause labels used in the unfolding steps of this execution.

The second one, TestCases, stores the computed test cases, where the already
processed test cases are distinguished by underlining them (i.e., A means that
the test case A has been already processed by the concolic testing semantics).

Concolic testing consists of an iterative process where TestCases is initialized
with some arbitrary (atomic) goal, e.g., TestCases = {A}, Traces is initialized

8 Traces are sequences of clause labels, with ε the empty trace.

8 S. Fortz et al.

to the empty set, and it proceeds as follows:

repeat
let p(tn, Xm) ∈ TestCases
TestCases ← (TestCases − {p(tn, Xm)}) ∪ {p(tn, Xm)}
execute 〈p(tn, Xm)id][p(Yn+m)id,ε,p(Yn+m),true,{Yn}〉

until all atoms in TestCases are underlined

where we assume that the first n arguments of p are its input arguments, and
concolic states are executed using the semantics in Figure 2 (see below).

In general, though, this iterative process might run forever, even if all consid-
ered concolic executions are terminating.9 Essentially, our algorithm aims at full
path coverage, so the required number of test cases is typically infinite. Therefore,
in practice, one usually sets a bound in the number of iterations, a time limit, or
a maximum term depth so that the domains of terms and atoms become finite.
In the implemented tool, we consider the last approach (see Section 4).

Finally, let us briefly describe the rules of the concolic testing semantics
shown in Figure 2:

Rules success, failure, backtrack, and unfold are straightforward extensions of
the same rules in the concrete operational semantics of Figure 1.

As for rules choice and choice fail, if we only look at the first component
of concolic states, they are identical to their counterpart in Figure 1; indeed,
the concolic testing semantics is a conservative extension of the standard opera-
tional semantics. Regarding the symbolic components, there are several notable
differences:

– First, although the symbolic goal is only unfolded using the clauses match-
ing with the concrete goal, we also determine the set of clauses matching
the symbolic goal, dk. This information will be useful in order to compute
alternative test goals (using the auxiliary function alts).

– Moreover, we update the current trace (from π to π.`(ci) in rule choice) and
the negative constraint from γ to γ ∧ γ′, where γ′ is used to ensure that the
symbolic goal, A′, only matches the same clauses as the concrete goal A.

– Finally, observe how the global parameters TestCases and Traces are up-
dated in these rules when π 6∈ Traces, i.e., when the considered execution
path is considered for the first time (otherwise, we just continue the con-
colic execution without modifying TestCases nor Traces). Note that we use
outvars here to ensure that the output arguments are unbound.

3.3 Concolic Testing in Practice

Consider again the logic program from Example 2:

(`1) p(a).
(`2) p(X)← q(X).
(`3) q(b).

9 In principle, we assume that concrete goals are terminating and, thus, concolic exe-
cutions are terminating too.

An SMT-Based Concolic Testing Tool for Logic Programs 9

(success) 〈trueδ |S][trueθ,π,A0,γ,G |S′〉; 〈successδ][successθ〉

(failure) 〈(fail,B)δ][(fail,B′)θ,π,A0,γ,G〉; 〈failδ][failθ〉

(backtrack)
S 6= ε

〈(fail,B)δ |S][(fail,B′)θ,π,A0,γ,G |S′〉; 〈S][S′〉

(choice)

clauses(A,P) = cn ∧ n > 0 ∧ clauses(A′, P) = dk
∧ γ′ = neg constr(A′, hd({dk}) \ hd({cn}), G)

〈(A,B)δ |S][(A′,B′)θ,π,A0,γ,G |S′〉
; 〈(A,B)c1δ | . . . |(A,B)cnδ |S

][(A′,B′)c1θ,π.`(c1),A0,γ∧γ′,G | . . . |(A
′,B′)cnθ,π.`(cn),A0,γ∧γ′,G |S

′〉
where

TestCases ← TestCases ∪ outvars(alts(A0, γ, A
′, hd({cn}), hd({dk}), G))

Traces ← Traces ∪ {π}
if π 6∈ Traces

(choice fail)
clauses(A,P) = {} ∧ clauses(A′, P) = dk ∧ γ′ = neg constr(A′, hd({dk}), G)

〈(A,B)δ |S][(A′,B′)θ,π,A0,γ,G |S′〉; 〈(fail,B)δ |S][(fail,B′)θ,π,A0,γ∧γ′,G |S′〉
where

TestCases ← TestCases ∪ outvars(alts(A0, γ, A
′, {}, hd({dk}), G))

Traces ← Traces ∪ {π}
if π 6∈ Traces

(unfold)
mgu(A,H1) = σ ∧mgu(A′, H1) = ρ

〈(A,B)H1←B1
δ |S][(A′,B′)H1←B1

θ,π,A0,γ,G
|S′〉

; 〈(B1σ,Bσ)δσ |S][(B1ρ,B′ρ)θρ,π,A0ρ,γρ,Var(Gρ) |S
′〉

Fig. 2. Concolic testing semantics

and the initial call p(a), so that we initialize TestCases to {p(a)} and, thus, start
concolic testing with 〈p(a)id][p(Y)id,ε,p(Y),true,{Y }〉, where we assume that the
argument of p/1 is an input argument and it is expected to be ground. Concolic
testing then computes the following derivation:10

〈p(a)id][p(Y)id,ε,p(Y),true,{Y }〉
;choice 〈p(a)`1id |p(a)`2id][p(Y)`1id,`1,p(Y),true,{Y } |p(Y)`2id,`2,p(Y),true,{Y }〉
;unfold 〈trueid |p(a)`2id][trueid,`1,p(Y),true,{Y } |p(Y)`2id,`2,p(Y),true,{Y }〉
;success 〈successid][successid〉

Moreover, in the first step, we add ε to Traces and update TestCases as follows:

TestCases ← TestCases
∪ outvars(alts(p(Y), true, p(Y), {p(a), p(X)}, {p(a), p(X)}, {Y }))

10 In this example, we often use clause labels instead of the actual clauses for clarity.

10 S. Fortz et al.

In this case, P({p(a), p(X)}) = {{}, {p(a)}, {p(X)}, {p(a), p(X)}}, and we ex-
clude the last element since this case is already considered. Therefore, following
the definition of function alts, we consider the following three candidates for H+

in order to compute alternative test cases:

– H+ = {}: here, we have H− = {p(a), p(X)} and we should find a solution to
α(p(Y), true, {}, {p(a), p(X)}, {Y }), i.e., find a ground instance of p(Y) that
unifies with no clause. In particular, one must solve the following constraint:

∃Y (true ∧ p(Y) 6= p(a) ∧ ∀X p(Y) 6= p(X))

which is trivially unfeasible.
– H+ = {p(a)}: here, we have H− = {p(X)} and we should find a solution to
α(p(Y), true, {p(a)}, {p(X)}, {Y }), i.e., find a ground instance of p(Y) that
only unifies with the first clause. In this case, one must solve the following
constraint:

∃Y (true ∧ p(Y) = p(a) ∧ ∀X p(Y) 6= p(X))

which is also unfeasible.
– H+ = {p(X)}: here, we have H− = {p(a)} and we should find a solution to
α(p(Y), true, {p(X)}, {p(a)}, {Y }), i.e., find a ground instance of p(Y) that
only unifies with the second clause. In this case, one must solve the following
constraint:

∃Y (true ∧ ∃X p(Y) = p(X) ∧ p(Y) 6= p(a))

which is satisfiable with model, e.g., X = b, Y = b (represented by the sub-
stitution {X/b, Y/b}). Therefore, we add a new test case p(b) to TestCases.

In the second iteration of the concolic testing algorithm, we consider the initial
goal p(b) and thus, we start concolic testing with 〈p(b)id][p(Y)id,ε,p(Y),true,{Y }〉.
Concolic testing then computes then the following derivation:

〈p(b)id][p(Y)id,ε,p(Y),true,{Y }〉
;choice 〈p(b)`2id][p(Y)`2id,`2,p(Y),p(Y)6=p(a),{Y }〉
;unfold 〈q(b)id][q(X){Y/X},`2,p(X),p(X)6=p(a),{X}〉
;choice 〈q(b)`3id][q(X)`3{Y/X},`2.`3,p(X),p(X)6=p(a),{X}〉
;unfold 〈trueid][true{Y/b},`2.`3,p(b),p(b)6=p(a),{}〉
;success 〈successid][success{Y/b}〉

Moreover, in the second choice step, we add `2 to Traces and update TestCases
as follows:

TestCases ← TestCases
∪ outvars(alts(p(X), p(X) 6= p(a), q(X), {q(b)}, {q(b)}, {X}))

Now, we have P({q(b)}) = {{}, {q(b)}}, and we exclude the last element since
this case is already considered. Therefore, there is only one candidate for com-
puting alternative test cases (i.e., H+ = {}) and we should find a solution to

α(q(X), p(X) 6= p(a), {}, {q(b)}, {X})

An SMT-Based Concolic Testing Tool for Logic Programs 11

Concolic Tool
(Prolog)

Z3 Binding

Parser
(Prolog)

SWIPrologZ3
(C)

Fig. 3. Implementation Workflow

i.e., finding a ground instance of q(X) that does not unify with q(b) and, more-
over, p(X) 6= p(a) holds. In particular, one must solve the following constraint:

∃X(p(X) 6= p(a) ∧ q(X) 6= q(b))

which is trivially feasible.11 Note that the solution X = a is now ruled out
thanks to the negative constraint p(X) 6= p(a), thus avoiding the problem shown
in Example 2. A possible solution is, e.g., X = c, so that the next test case that
we add to TestCases is p(c).

In the third (and last) iteration, no more alternatives are obtained (we omit
the concolic testing derivation for brevity), so our algorithm produces three test
cases for this example: p(a), p(b) and p(c), achieving a full coverage.

4 Implementation and Experimental Evaluation

In this section, we describe the implementation of an SMT-based concolic testing
tool for Prolog programs that follows the ideas presented so far.

We have implemented our tool in SWI-Prolog [15] and have used the C
interface of SWI-Prolog in order to call the functions of the Z3 solver [3]. The
scheme of the workflow is shown in Figure 3. Here, “Concolic Tool” is the main
module (written in Prolog) which performs concolic execution. Once a constraint
is built, it is transformed into an SMT well-formed string and sent to the module
“SWIPrologZ3”, a module written in C that uses Z3’s library to interact with
the Z3 solver and solve this constraint. The results are sent back to the main
module “Concolic Tool”.

In contrast to the concolic testing semantics shown in Figure 2, we have
implemented a nondeterministic version of concolic execution which is based
on Prolog’s backtracking mechanism. Here, the information that must survive a
backtracking step is inserted to the internal database using dynamic predicates
and asserted for consistency.

Regarding the termination of concolic testing, we impose a maximum term
depth for the generated test cases. Since the domain is finite and we do not
generate duplicated test cases, termination is trivially ensured. Consider, for

11 Here, we assume that the considered domain includes at least one more constant,
e.g., c.

12 S. Fortz et al.

instance, the usual specification of natural numbers built from 0 and s():

(`1) nat(0).
(`2) nat(s(X))← nat(X).

where we assume that the argument of nat/1 is an input argument (and must be
ground). Given an initial goal like nat(0), in the first iteration of the algorithm we
add, e.g., the following new test cases: nat(1) and nat(s(0)), where the constant
1 is used to avoid matching any clause. When considering the second test case,
we will generate the alternative test cases nat(s(1)) and nat(s(s(0)). And the
process goes on forever.

In this context, by setting a maximum term depth, e.g., 2, one can limit the
generated test cases to only

{nat(0), nat(1), nat(s(0)), nat(s(1)), nat(s(s(0))), nat(s(s(1)))}

The maximum term depth is an input parameter of our concolic testing tool
since it depends on the particular program and the desired code coverage.

Finally, we show some selected results from a preliminary experimental evalu-
ation of our concolic testing tool. We aimed at addressing the following questions:

1. Q1: What is the performance of our technique on typical benchmarks? Here,
the goal was to assess the viability of the proposed method by measuring its
execution time on some selected benchmarks.

2. Q2: How does it compare to existing tools for concolic testing? In particular, we
wanted to consider the tool contest [9], which is publicly available through
a web interface.12

Benchmarks. We selected six subject programs from previous benchmarks [9]
and from GitHub.13 We ran concolic testing between 3 and 100 executions on a
MacBook Pro hexacore 2,6 Ghz with 16 GB RAM in order to get reliable results.
Reported times, in seconds, are the average of these executions. Our results are
reported in Table 1. Here, concolic refers to the tool presented in this paper, while
contest refers to the tool introduced in [9]. The size of a subject program is the
number of its source lines of code. The column Ground Args displays the number
of arguments of the initial symbolic goal to ground, starting at the first position.
#TCs refers to the number of generated test cases. A timeout for contest is set
to 1000 seconds (the crash is an overflow).

Q1: Performance. The three first lines of Table 1 clearly show the influence
of the maximum term depth in a typically recursive program. Our procedure
handles recursion better than contest because we end up generating complex
constraints that are more efficiently solved using an SMT solver than using the
specific algorithms in [9], as expected. For simpler cases, though, interacting

12 Moreover, a copy of the Prolog sources of contest were provided by its authors.
13 https://github.com/Anniepoo/prolog-examples

https://github.com/Anniepoo/prolog-examples

An SMT-Based Concolic Testing Tool for Logic Programs 13

Table 1. Summary of experimental results

Subject Ground Max time time #TCs #TCs
program size Initial goal Args Depth concolic contest concolic contest

Nat 2 nat(0) 1 1 0.050 0.0273 3 4

Nat 2 nat(0) 1 5 0.0897 0.1554 7 12

Nat 2 nat(0) 1 50 1.6752 19.5678 52 102

Generator 7 generate(empty, A, B) 1 1 1.4517 0.7096 9 9

Generator 7 generate(empty,T, B) 2 1 1.3255 4.4820 9 9

Generator 7 generate(empty,T,H) 3 1 1.3211 crash 9 N/A

Activities 38
what to do today(sunday,
sunny,wash your car)

3 2 6.3257 timeout 122 N/A

Cannibals 78 start(config(3,3,0,0)) 1 2 0.0535 timeout 2 N/A

Family 48 parent(dicky,X) 1 1 20.0305 64.1838 9 19

Monsters
and mazes 113 base score(will,grace) 2 2 0.2001 0.4701 6 7

with the solver is likely more expensive than performing the computations in
[9]. However, as the complexity increases, our SMT-based technique is faster and
scales better than contest. These preliminary experiments support our choice of
using a powerful SMT solver for test case generation.

Q2: Comparison to other concolic testing tools. Besides scalability, which is already
considered above, we noticed that our tool typically produces less test cases that
contest. In principle, this can be explained by the fact that the algorithm in [9]
allows one to also bind the output arguments of the initial goal. Consider, e.g.,
the following simple program:

p(a, b).
p(X, c).

where the first argument is an input argument and the second one is an output
argument. Here, contest might return four test cases:

– p(a, a), which matches no clause;
– p(a, b), which only matches the first clause;
– p(a, c), which only matches the second clause;
– p(a, Y), which matches both clauses.

In contrast, our tool would only return the test cases p(a, Y), which matches
both clauses, and p(b, Y), which only matches the second clause, since the second
argument is an output argument and so, it cannot be bound.

This is essentially a design decision, but we think it is more sensible to keep
output arguments unbound in test cases.

On the other hand, we also noticed that, in some cases, our tool produced
some test cases that were not generated by contest. This is explained by the
problem illustrated in Example 2.

14 S. Fortz et al.

Threats to Validity. These experiments are preliminary and are therefore subject
to validity threats. We mitigated internal validity by repeating our experiments
several times and ensuring the validity of the produced test cases manually.
We alleviated external validity by selecting programs of varying size publicly
available on GitHub, though we cannot guarantee they are representative.

5 Conclusion

In this paper, we have designed an improved concolic testing scheme that is
based on [9] but adds support for negative constraints and defines selective uni-
fication problems as constraints on Herbrand terms. Our approach overcomes
some of the problems in previous approaches [10,11], mainly regarding the scal-
ability of the technique as well as a potential source of incompleteness due to
the lack of negative information. We have implemented an SMT-based concolic
testing tool in SWI-Prolog that uses the Z3 library for C through the foreign
language interface of SWI-Prolog. Our preliminary experimental evaluation has
shown promising results regarding the scalability of the method in comparison
to previous approaches.

As for future work, we plan to extend and improve our concolic testing tool.
In particular, we will consider its extension to CLP programs [7]. Given the way
selective unification problems are represented in this paper (as constraint satis-
fiability problems), dealing with constraints over domains other than Herbrand
terms seems very natural. Finally, we will formally prove the correctness and
completeness of the improved algorithms.

References

1. Apt, K.: From Logic Programming to Prolog. Prentice Hall (1997)
2. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiability

modulo theories. In: Fontaine, P., Goel, A. (eds.) Proc. of the 10th International
Workshop on Satisfiability Modulo Theories (SMT 2012). EPiC Series in Comput-
ing, vol. 20, pp. 3–11. EasyChair (2013)

3. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337–340. TACAS’08/ETAPS’08,
Springer-Verlag, Berlin, Heidelberg (2008)

4. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Horn clauses
as an intermediate representation for program analysis and transformation. TPLP
15(4-5), 526–542 (2015). https://doi.org/10.1017/S1471068415000204

5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proc. of PLDI’05. pp. 213–223. ACM (2005)

6. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in CLP. TPLP 10(4-6), 659–674 (2010)

7. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Program.
19/20, 503–581 (1994). https://doi.org/10.1016/0743-1066(94)90033-7

8. Lloyd, J.: Foundations of Logic Programming. Springer-Verlag, Berlin (1987), 2nd
Ed.

https://doi.org/10.1017/S1471068415000204
https://doi.org/10.1016/0743-1066(94)90033-7

An SMT-Based Concolic Testing Tool for Logic Programs 15

9. Mesnard, F., Payet, É., Vidal, G.: Concolic testing in logic programming. TPLP
15(4-5), 711–725 (2015). https://doi.org/10.1017/S1471068415000332

10. Mesnard, F., Payet, É., Vidal, G.: On the completeness of selective unification in
concolic testing of logic programs. In: Hermenegildo, M.V., López-Garćıa, P. (eds.)
Proc. of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016). Revised Selected Papers. Lecture Notes in
Computer Science, vol. 10184, pp. 205–221. Springer (2017)

11. Mesnard, F., Payet, É., Vidal, G.: Selective unification in constraint logic pro-
gramming. In: Vanhoof, W., Pientka, B. (eds.) Proc. of the 19th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2017).
pp. 115–126. ACM (2017)

12. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proc. of ESEC/SIGSOFT FSE 2005. pp. 263–272. ACM (2005)

13. Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A Linear Op-
erational Semantics for Termination and Complexity Analysis of ISO Prolog. In:
LOPSTR’11. pp. 237–252. Springer LNCS 7225 (2011)

14. Vidal, G.: Concolic execution and test case generation in Prolog. In: Proietti, M.,
Seki, H. (eds.) Proc. of the 24th International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR 2014). Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8981, pp. 167–181. Springer (2015)

15. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1-2),
67–96 (2012). https://doi.org/10.1017/S1471068411000494

https://doi.org/10.1017/S1471068415000332
https://doi.org/10.1017/S1471068411000494

	An SMT-Based Concolic Testing Tool for Logic Programs

