
Variability-aware Behavioural Learning
Sophie Fortz

sophie.fortz@unamur.be
PReCISE, NaDI, University of Namur

Namur, Belgium

ABSTRACT
Addressing variability proactively during software engineering ac-
tivities means shifting from reasoning on individual systems to
reasoning on families of systems. Adopting appropriate variability
management techniques can yield important economies of scale and
quality improvements. Conversely, variability can also be a curse,
especially for Quality Assurance (QA), i.e., verification and testing
of such systems, due to the combinatorial explosion of the number
of software variants. Featured Transition Systems (FTSs) were in-
troduced as a way to represent and reason about the behaviour of
Variaility-intensive Systems (VISs). By labelling a transition system
with feature expressions, FTSs capture multiple variants of a sys-
tem in a single model, enabling reasoning at the family level. They
have shown significant improvements in automated QA activities
such as model-checking and model-based testing, as well as guiding
design exploration activities. Yet, as most model-based approaches,
FTS modelling requires both strong human expertise and significant
effort that would be unaffordable in many cases, in particular for
large legacy systems with outdated specifications and/or systems
that evolve continuously.

Therefore, this PhD project aims to automatically learn FTSs from
existing artefacts, to ease the burden of modelling FTS and support
continuous QA activities. To answer this research challenge, we
propose a two-phase approach. First, we rely on deep learning tech-
niques to locate variability from execution traces. For this purpose,
we implemented a tool called VaryMinions. Then, we use these
annotated traces to learn an FTS. In this second part, we adapt the
seminal 𝐿∗ algorithm to learn behavioural variability. Both frame-
works are open-source and we evaluated them separately on several
datasets of different sizes and origins (e.g., software product lines
and configurable business processes).

CCS CONCEPTS
• Software and its engineering → Software reverse engineer-
ing; Software product lines.

KEYWORDS
Software Product Lines, Featured Transition Systems, Reverse En-
gineering, Active Automata Learning, Variability Mining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0092-7/23/08. . . $15.00
https://doi.org/10.1145/3579028.3609007

ACM Reference Format:
Sophie Fortz. 2023. Variability-aware Behavioural Learning. In 27th ACM
International Systems and Software Product Line Conference - Volume B (SPLC
’23), August 28-September 1, 2023, Tokyo, Japan. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3579028.3609007

1 INTRODUCTION AND MOTIVATION
Variability-Intensive Systems (VISs) are families of systems with
different specificities, while sharing a common purpose. Each indi-
vidual member of this family is referred to as a variant or a product,
which is defined by a combination of features (i.e., specific charac-
teristics). VISs encompass a wide range of applications, including
Software Product Lines (SPLs), configurable systems or adaptive
systems.

For Quality Assurance (QA) activities, such as verification and
validation, one of the challenges posed by Variability-Intensive Sys-
tems (VISs) lies the combinatorial explosion of variants. Even with
a relatively modest number of boolean features (i.e., options that
can be either activated or deactivated), such as 33, the number of
possible variants exceeds the population of the Earth. With 320
features, the number of variants surpasses the number of atoms in
the universe. To provide a comparison, the Linux Kernel counts ap-
proximately 15, 000 distinct features [30, 32], which are not limited
to boolean values but can have different types or attributes. When
considering the verification and validation of each product con-
figuration individually, tackling the problem becomes practically
infeasible. One solution to mitigate the impact of combinatorial
explosion is to reason on family models. Model-based approaches
facilitate the automation of numerous QA tasks, offering a viable
approach to address this challenge.

Several approaches have been defined to model the behaviour of
VISs. Classen et al. [8–10] defined Featured Transition Systems (FTS)
as a way to represent an entire SPL in a compact way. FTSs repre-
sent the behaviour of an SPL by a Labelled Transition System [5, 19],
whose labels are called Feature expressions. Feature Expressions re-
late structural variability (i.e., SPL features) to behaviour, specifying
which subset of products is able to execute each transition. Thus,
FTS take advantage of shared behaviour and allow substantial scale
economies to perform analysis tasks, such as testing and model
checking.

Yet, VIS are rarely shipped with FTSs. Engineers usually provide
these models by hand, which is time-consuming, error-prone and
does not scale to complex VISs. Current inference approaches [11,
12, 16, 34] either suffer from scalability issues (enumerative, variant-
based learning) or lack of automation (manual feature annota-
tion). These existing approaches often overlook the key strength
of variability models, which is their capability to express shared
behaviours among different products. Hence, the main objective

https://orcid.org/0000-0001-9687-8587
https://doi.org/10.1145/3579028.3609007
https://doi.org/10.1145/3579028.3609007
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579028.3609007&domain=pdf&date_stamp=2023-08-28

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Sophie Fortz

of this research is to tackle these limitations and automate the cre-
ation of FTS, to alleviate the burden associated with modelling FTS
and enhance continuous QA activities. By harnessing the power of
automated learning techniques, this research aims to unleash the
full potential of variability models in expressing shared behaviours.
This, in turn, will enable more streamlined and effective verification
and validation processes, leading to improved software quality.

To address the current automation and scalability issues identi-
fied in the state-of-the-art, we take commonalities between variants
into account right from the early stages of learning. As FTS is a
fundamental formalism that can serve as a semantics for other VIS
modelling languages such as UML State Diagrams (e.g., via flatten-
ing [14]), the results are intended to be generic and therefore have a
profound impact on behavioural inference and automation.

2 RESEARCH QUESTIONS
This PhD project aims to answer the following research questions:
RQ1 How to automatically learn Featured Transition Sys-

tems in order to ease the burden of modelling FTS and
support continuous VIS QA activities?

RQ1.1 What amount of time does a variability-aware learning
approach requires? This question addresses the feasibility,
efficiency and scalability of our approach.

RQ1.2 Does variability-aware learning lead to fewer membership
queries than state-of-the-art approaches? By limiting the
number of queries, the learning process becomes more
efficient and faster, thereby allowing better scaling on
large systems.

RQ1.3 Does variability-aware learning lead to fewer learning rounds
and equivalence queries than state-of-the-art approaches?
Equivalence queries are typically very expensive in a learn-
ing algorithm, requiring significant computational resources
and time. Therefore, it is crucial to minimise their number
whenever possible.

RQ1.4 Does variability-aware learning lead to fewer resets than
state-of-the-art approaches? Resets allow a system to come
back to its original state, as if we had just restarted it.
Resets are difficult to avoid during learning process, but
they are time-consuming and should be avoided.

RQ2 How can we classify previously unseen behaviour to
multiple variants of a VIS?

RQ2.1 How accurately can we identify process variants based on
their traces? To the best of our knowledge, we propose
the first attempt to use recurrent neural networks (RNNs)
to learn such a mapping, we cannot compare it with the
state of the art. Instead, we expect the RNNs to be at least
more accurate than random classifiers (accuracy higher
than > 50%).

RQ2.2 What is the performance of long-short term memory (LSTM)
versus that of gated recurrent unit (GRU) for process traces
classification? We would like to know which model archi-
tecture is the most appropriate for this task if any.

Hypothesis. In order to focus on the behavioural aspects, we as-
sume that the Feature Model either already exists or has been learned
in some way. Various studies have already attempted to learn struc-
tural variability, depending on the source of information available.

We can highlight different methods, such as natural language analy-
sis [27] or static analysis of variant configurators [33]. Other studies
learned FM from variant catalogues (product tables), either using
datamining [1, 2] or evolutionary algorithms [28]. These techniques
were summarised in a recent systematic literature review [29]. Be-
sides, Ramos-Gutiérrez et al. [31] use process mining to retrieve
the process of configuring an SPL.

3 METHODOLOGY AND APPROACH
To address these research questions, we propose a two-phase frame-
work, depicted in Figure 1.

In order to learn an FTS, we rely on Dana Angluin’s L∗ learning
algorithm [3]. The 𝐿∗ algorithm follows a simple metaphor where
a Learner component constructs a model iteratively. The Learner
make queries to another component known as the Teacher, which
acts as a proxy for the system we want to model. If the learned
model is incorrect, the Teacher provides counterexamples to guide
the learning process. In this PhD, we adapt L∗ algorithm to learn
the behaviour of systems in a family-based and symbolic manner,
treating feature expressions as first class citizen.

Figure 1: LiFTS General Framework

Learning the VIS in a family-based fashion requires to relate
Angluin’s queries and counterexamples to configurations. However,
since the Teacher only knows about previously observed variants,
the existing mappings are incomplete as they rely on partial obser-
vations of the system. All new configurations are considered un-
known. Therefore, a configuration prediction technique is required
to bridge this gap and accurately relate queries and counterexamples
to specific configurations. Being able to locate variations is also an
essential part of any re-engineering endeavour [4] and is naturally
useful for testing techniques, notably to sample which variants
should be tested [23]. Existing variant analysis [35] techniques
rather focusing on the differences between identified variants than
identifying which variant(s) may have produced a given trace. To
address these challenges, we propose to leverage deep learning tech-
niques to develop an efficient approach for variability localisation.
By harnessing the power of deep learning, we aim to enhance the
capability of accurately identifying and localising variations within
the VIS, thus contributing to improved understanding and testing
of software variants. This second project is called VaryMinions.

Variability-aware Behavioural Learning SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

4 PRELIMINARY RESULTS
Our results are divided in two parts, each of them answering one
of the general research questions.

4.1 Variability-L∗

To address RQ1 (and its sub-questions), we introduce a novel model
called Featured Deterministic Finite Automaton (FDFA), which
serves as a finite and deterministic version of Featured Transition
Systems. Transition systems (and by extension FTSs) generally rep-
resent infinite behaviours. However, Since our learning approach
is based on finite execution trace, it naturally defines final states.
We thus defined FDFA as a way to represent finite behaviour in an
FTS-like structure. We then present a new algorithm, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑−𝐿∗
(𝐹𝐿∗), that fundamentally differs from previous approaches.

While Tavassoli, Damasceno, et al. [11, 12, 34] has contributed
valuable insights into learning in behavioural models of SPLs, their
approaches relies on a product-based perspective. This limits the
applicability to systems with few features. In this PhD project, we
aim to learn a unified model, rather than treating each product
individually (as in [11, 34]). We propose a more comprehensive
and integrated approach, where feature expression are treated as
first-class citizens. The notion of software family becomes the core
of our approach, emphasising the importance of considering the
relationships between features.

We also provide an implementation of 𝐹𝐿∗ called LiFTS, which
successfully learns five distinct case studies within a short time
frame ranging from a few seconds to less than two hours. Each
case studies has between 5 and 25 features, defining 6 to 4, 774
different variants. Furthermore, we highlight the unique aspects of
𝐹𝐿∗ compared to previous approaches. Additionally, we define a
visualisation aid for FTS/FDFA models.

Variability-𝐿∗ contributions:
(1) A new formalism, FDFA, as a variation FTS, allowing finite

behaviour and deterministic by construction;
(2) 𝐹𝐿∗, a new variation of 𝐿∗ algorithm, to automate the be-

haviour modelling of an SPL, considering variability from
the early stage of learning;

(3) LiFTS, an implementation of 𝐹𝐿∗, which successfully learns
5 distinct case studies (with 5 to 24 input symbols) within
short time frame, ranging from a few seconds to less than
two hours for each case study;

(4) a first comparison with the original algorithm and the latest
state-of-the-art approaches, demonstrating a significant re-
duction in the number of queries when variability is handled
explicitly;

(5) a procedure to ease FTS and FDFA visualisation, by leverag-
ing the capabilities of a Neo4J graph database.

4.2 VaryMinions
To address RQ2, we draw inspiration from natural language pro-
cessing (NLP) techniques. We establish an analogy between an NLP
sentence and an execution trace, where words or actions are ar-
ranged into valid sentences based on a specific grammar. Leveraging
this analogy, VaryMinions utilises RNNs to classify VIS behaviours
among different variants that can reproduce them. However,in NLP

context, classical RNNs tend to suffer from the vanishing or explod-
ing gradient problem [7, 24] when dealing with long sentences. To
overcome this issue, we chose more specified RNN architectures:
GRUs and LSTMs. We evaluate VaryMinions on six diverse datasets,
encompassing both SPL and business process domains. Each dataset
consists of up to 50 variants and 5, 000 event traces per variant.

We decided to vary only a few of hyperparameters to try to
understand how much impact they may have on learning. In total,
we evaluate 20 distinct RNN parameterisations on each of the 6
datasets. Based on our previous experiences [21], we decide to set
the number of units to 30 which has shown relatively good per-
formances while limiting the training time. The percentage of the
data used for training is set to 66% of the whole dataset which is
a common value in the ML community, the remaining traces are
used in the test set to assess the generalisation performances of the
trained models. We set the batch size to 128, which is adapted to
the dataset size. We set the number of epochs to 20 to avoid overfit-
ting. In our preliminary evaluations (evaluated between 10 and 50
epochs), a plateau was reached after approximately 15 epochs. We
thus set the number of epochs to 20, to allow for small increases in
accuracy. During training, Loss functions are used to optimise the
weights of the networks by back-propagating errors. We have used
three loss functions already implemented in tensorflow 1, namely
Binary Cross-Entropy (with and without logits, respectively named
hereafter Bin-CE and Bin-CE logits) and the Mean Squared Error
(MSE). Since we represent each variant by an element in a vector,
the error can be defined as a difference between two vectors. We
thus propose two new custom loss functions: a variant of the Jac-
card distance [26] (named Weight_Jaccard hereafter, already used
to evaluate trace dissimilarity in VISs, e.g., [18]), and the Manhattan
distance between two vectors (sometimes called L1 norm). Finally,
we experimented with two common activation functions which are
sigmoid and hyperbolic tangent (tanh).

The training and performance evaluation process is done as
follows: i) the entire dataset is randomly split into training and
test sets. We have used the Keras function train_test_split 2 that
ensures the data distribution of classes among the two sets are
similar. ii) Amodel is trained using the training set. iii) Its prediction
performances are evaluated on the test set. We mitigate biases in
our analyses by repeating the whole process ten times, with a
new split between train and test sets. In total, the evaluation took
approximately 150 days of execution.

VaryMinions contributions:
(1) the first family-based approach, which we called VaryMin-

ions, to map execution traces to variants of a system. We
showed empirically that VaryMinions can distinguish 50
variants from 5, 000+ event traces per variant;

(2) a detailed account on the usage of Long Short Term Mem-
ory (LSTMs) [25] and Gated Recurrent Units (GRUs) [6],
two RNN architectures, on six different datasets, describing
business processes and course management system variants,
showing that we can identify the variant(s) producing an
event trace with high accuracy (> 80%);

1https://www.tensorflow.org/api_docs/python/tf/keras/losses
2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_
test_split.html

https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Sophie Fortz

(3) four datasets openly available and based on Claroline [13,
15, 17] and containing 2 ∗ 10 and 2 ∗ 50 software variants
with 5, 000 traces per variants;

(4) a characterisation of the learning difficulty based on the
behaviour shared amongst event traces.

The first results of this thesis has been already published in the
following contributions:

[20] Sophie Fortz. Lifts: Learning featured transition systems. In
Proceedings of the 25th ACM International Systems and Soft-
ware Product Line Conference - Volume B, Leicester, United
Kindom, SPLC ’21, page 1–6, New York, NY, USA, 2021. As-
sociation for Computing Machinery (Doctoral Symposium)
(Doctoral Symposium)

[21] Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans,
and Gilles Perrouin. Varyminions: leveraging RNNs to iden-
tify variants in event logs. In Apostolos Ampatzoglou, Daniel
Feitosa, Gemma Catolino, and Valentina Lenarduzzi, editors,
Proceedings of the 5th International Workshop on Machine
Learning Techniques for Software Quality Evolution, Athens,
Greece, 23 August 2021, pages 13–18. ACM, 2021

Variability-aware 𝐿∗ is currently unpublished, but we have plans
to address this and publish it in the near future.

Open Science Policy. We have provided a replication package
that includes an implementation of VaryMinions, along with all
the related results [22]. In the future, we intend to offer a similar
replication package for Variability-𝐿∗, after conducting a thorough
evaluation.

5 WORK PLAN
Since the 2021 edition of the Doctoral Symposium [20], we pursued
our work on trace classification among multiple variants. We pro-
vide a statistical evaluation on 4 new custom datasets from SPL,
in addition to our 2 previous business process datasets. We also
improved our implementation of VaryMinions.

During this period, we also participated to several scientific
events, including:

• the workshop of the Interdisciplinary Centre for Security,
Reliability and Trust (SnT group from Luxemburg, event
taking place in Namur, 2021);

• the 44th ICSE (Virtual, Pittsburgh, USA, 2022);
• the annual workshop of the EOS project on Verifying Learn-
ing Artificial Intelligence Systems (Leuven, Belgium, 2022);

• the annual days of the Programming and Software Engi-
neering Research Group (GDR-GPL Days, Vannes, France,
2022);

• the 26th SPLC (Graz, Austria, 2022);
• the PhD day of the Computer Science faculty (Namur, Bel-
gium, 2022);

• the Women & Girls in Sciences Day (Namur, Belgium, 2022
and 2023 editions);

• the 17th VaMoS (Odense, Denmark, 2023).

A poster was presented at the 2022 edition of Women & Girls in
Sciences and short presentations were given at the SnT workshop,
the PhD day and the 2023 edition of Women & Girls in Sciences.

FutureWork. This PhD is planned to be defended publicly by the end
of September 2023. Until then, we pursue the work on Variability-
aware 𝐿∗, particularly its evaluation. We envision a statistical anal-
ysis for a better comparison with the state-of-the-art and assessing
the impact of family-based methods versus product-based methods.

Then, we envision several research directions:

• Combining VaryMinions and Variability-aware 𝐿∗: We pro-
pose an integrated approach for the LiFTS project, suggest-
ing the integration of VaryMinions into our implementa-
tion of Variability-aware 𝐿∗ to enhance the capabilities of
the Teacher. We discus the joint learning of structural and
behavioural aspects, addressing limitations in the current
assumption of a pre-existing feature model in LiFTS, and
proposing the development of a comprehensive platform for
FTS manipulation.

• Studying variability-aware equivalence queries: We aim to in-
vestigate techniques and approaches to handle equivalence
queries in the context of VISs, to improve the scalability, ac-
curacy, and efficiency of equivalence testing in the presence
of variability. This research can contribute to the develop-
ment of more reliable and robust techniques for learning
and verifying variability-intensive systems, enabling better
understanding and analysis of their behavioural properties.

• Generalising the framework and improving its scalability: To
tackle scalability challenges in the context of variability, we
suggest the use of counterexamples to approximate equiva-
lence, prioritisation techniques for exploring the behaviour
space efficiently, and extending the SUL interface to interact
directly with a real system for practical evaluation. We also
consider memory usage, optimisations through parallelism
and integration with existing frameworks.

• Developing a feature-based approach data representation for
VaryMinions: To overcome the impracticality of enumerat-
ing and executing all variants in large-scale VISs, a potential
future direction is to shift the data representation. Instead of
explicitly considering each variant, system configurations
can be described based on their features. This approach en-
ables precise identification of feature combinations that cor-
respond to specific behaviours, offering valuable insights for
fault localisation and repair techniques where identifying
the specific feature combination causing an issue is crucial.

• Studying other neural network architectures: To optimise the
classification performance in trace-to-variant mapping, we
need to consider factors such as loss functions, activation
functions, network complexity, and data labelling. We sug-
gest exploring alternative loss functions, custom activation
functions, balancing network complexity and generalisation
capability, and leveraging semi-supervised learning tech-
niques to reduce the labelling effort and improve prediction
performance.

Overall, we provide perspectives and potential research direc-
tions for advancing variability-aware automata learning and im-
proving the association of behaviour with VIS configurations, with
a focus on integration, scalability, data representation, and neural
network optimisation.

Variability-aware Behavioural Learning SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

ACKNOWLEDGEMENTS
Sophie Fortz is supported by the FNRS via a FRIA grant.

REFERENCES
[1] Mathieu Acher, Benoit Baudry, Patrick Heymans, Anthony Cleve, and Jean-Luc

Hainaut. 2013. Support for reverse engineering and maintaining feature models.
In VaMoS, Stefania Gnesi, Philippe Collet, and Klaus Schmid (Eds.). ACM, 20.

[2] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles Van-
beneden, Philippe Collet, and Philippe Lahire. 2012. On extracting feature models
from product descriptions. In Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems. 45–54.

[3] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.
Information and computation 75, 2 (1987), 87–106. https://doi.org/10.1016/0890-
5401(87)90052-6

[4] Wesley Klewerton Guez Assunção, Roberto Erick Lopez-Herrejon, Lukas Lins-
bauer, Silvia Regina Vergilio, and Alexander Egyed. 2017. Reengineering legacy
applications into software product lines: a systematic mapping. Empirical Soft-
ware Engineering 22 (2017), 2972–3016.

[5] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
press.

[6] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 1724–1734. https:
//doi.org/10.3115/v1/D14-1179

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 Workshop on Deep Learning, December 2014.

[8] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Trans. Software Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.
1109/TSE.2012.86

[9] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. 2010. Model checking lots of systems: efficient verification
of temporal properties in software product lines. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1. 335–344.

[10] Maxime Cordy, Xavier Devroey, Axel Legay, Gilles Perrouin, Andreas Classen,
Patrick Heymans, Pierre-Yves Schobbens, and Jean-François Raskin. 2019. A
decade of featured transition systems. In From Software Engineering to Formal
Methods and Tools, and Back. Springer, 285–312.

[11] Carlos Diego N Damasceno, Mohammad Reza Mousavi, and Adenilso da
Silva Simao. 2019. Learning to reuse: Adaptive model learning for evolving
systems. In International Conference on Integrated Formal Methods. Springer, 138–
156.

[12] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and Adenilso
da Silva Simao. 2021. Learning by sampling: learning behavioral family models
from software product lines. Empirical Software Engineering 26, 1 (2021), 1–46.

[13] Xavier Devroey. 2020. VIBeS Case Studies: Featured Transition Systems and
Feature Models. https://doi.org/10.5281/zenodo.4105900. https://doi.org/10.5281/
zenodo.4105900

[14] X. Devroey, M. Cordy, P. Schobbens, A. Legay, and P. Heymans. 2015. State
machine flattening, a mapping study and tools assessment. In 2015 IEEE Eighth
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW). 1–8. https://doi.org/10.1109/ICSTW.2015.7107408

[15] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza Samih, Axel Legay,
Pierre-Yves Schobbens, and Patrick Heymans. 2017. Statistical prioritization
for software product line testing: an experience report. Softw. Syst. Model. 16, 1
(2017), 153–171. https://doi.org/10.1007/s10270-015-0479-8

[16] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza Samih, Axel Legay,
Pierre-Yves Schobbens, and Patrick Heymans. 2015. Statistical prioritization for
software product line testing: an experience report. Software & Systems Modeling
(2015), 1–19. https://doi.org/10.1007/s10270-015-0479-8

[17] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Pierre-Yves Schobbens, Axel
Legay, and Patrick Heymans. 2014. Towards Statistical Prioritization for Software
Product Lines Testing. In Proceedings of the Eighth International Workshop on

Variability Modelling of Software-Intensive Systems (Sophia Antipolis, France)
(VaMoS ’14). Association for Computing Machinery, New York, NY, USA, Article
10, 7 pages. https://doi.org/10.1145/2556624.2556635

[18] Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. 2016. Search-based similarity-driven behavioural SPL testing. In Pro-
ceedings of the Tenth International Workshop on Variability Modelling of Software-
intensive Systems. 89–96.

[19] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. 2006. A foundation for
behavioural conformance in software product line architectures. In Proceedings
of the ISSTA 2006 workshop on Role of software architecture for testing and analysis.
39–48.

[20] Sophie Fortz. 2021. LIFTS: Learning Featured Transition Systems. In Proceedings of
the 25th ACM International Systems and Software Product Line Conference - Volume
B, Leicester, United Kindom (Leicester, United Kindom) (SPLC ’21). Association
for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/
3461002.3473066

[21] Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles Per-
rouin. 2021. VaryMinions: leveraging RNNs to identify variants in event logs. In
Proceedings of the 5th International Workshop on Machine Learning Techniques
for Software Quality Evolution, Athens, Greece, 23 August 2021, Apostolos Ampat-
zoglou, Daniel Feitosa, Gemma Catolino, and Valentina Lenarduzzi (Eds.). ACM,
13–18. https://doi.org/10.1145/3472674.3473980

[22] Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles Perrouin.
2022. VaryMinions. https://zenodo.org/record/7492126. https://doi.org/10.5281/
zenodo.7492126 Sophie Fortz is supported by the FNRS via a FRIA grant. Gilles
Perrouin is an FNRS Research Associate..

[23] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. Empir. Softw. Eng. 24, 2 (2019),
674–717. https://doi.org/10.1007/s10664-018-9635-4

[24] Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6, 02 (1998), 107–116. https://doi.org/10.1142/
S0218488598000094

[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[26] Paul Jaccard. 1901. Étude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37
(1901), 547–579.

[27] Yang Li, Sandro Schulze, and Gunter Saake. 2017. Reverse Engineering Variability
from Natural Language Documents: A Systematic Literature Review. In SPLC’17 -
Volume A (Sevilla, Spain) (SPLC ’17). ACM, New York, NY, USA, 133–142. https:
//doi.org/10.1145/3106195.3106207

[28] Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed. 2015. A
systematic mapping study of search-based software engineering for software
product lines. Information and Software Technology 61 (2015), 33 – 51. https:
//doi.org/10.1016/j.infsof.2015.01.008

[29] Jabier Martinez and Ali Parsai. 2018. D3.1: Identification of relevant state of the
art. Technical Report. ITEA 3 ReVAMP2 Project Consortium.

[30] Johann Mortara and Philippe Collet. 2021. Capturing the Diversity of Analyses on
the Linux Kernel Variability. Association for Computing Machinery, New York,
NY, USA, 160–171. https://doi.org/10.1145/3461001.3471151

[31] Belén Ramos-Gutiérrez, Ángel Jesús Varela-Vaca, José A Galindo, María Teresa
Gómez-López, and David Benavides. 2021. Discovering configuration workflows
from existing logs using process mining. Empirical Software Engineering 26, 1
(2021), 1–41.

[32] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2010. The Variability Model of The Linux Kernel. VaMoS 10, 10 (2010),
45–51.

[33] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2011. Reverse engineering feature models. In Proceedings of the 33rd
International Conference on Software Engineering. ACM, 461–470.

[34] Shaghayegh Tavassoli, Carlos Diego N Damasceno, Ramtin Khosravi, and Mo-
hammad Reza Mousavi. 2022. Adaptive behavioral model learning for software
product lines. In Proceedings of the 26th ACM International Systems and Software
Product Line Conference-Volume A. 142–153.

[35] Farbod Taymouri, Marcello La Rosa, Marlon Dumas, and Fabrizio Maria Maggi.
2021. Business process variant analysis: Survey and classification. Knowledge-
Based Systems 211 (2021), 106557. https://doi.org/10.1016/j.knosys.2020.106557

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.5281/zenodo.4105900
https://doi.org/10.5281/zenodo.4105900
https://doi.org/10.5281/zenodo.4105900
https://doi.org/10.1109/ICSTW.2015.7107408
https://doi.org/10.1007/s10270-015-0479-8
https://doi.org/10.1007/s10270-015-0479-8
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.1145/3461002.3473066
https://doi.org/10.1145/3461002.3473066
https://doi.org/10.1145/3472674.3473980
https://zenodo.org/record/7492126
https://doi.org/10.5281/zenodo.7492126
https://doi.org/10.5281/zenodo.7492126
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3106195.3106207
https://doi.org/10.1145/3106195.3106207
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1145/3461001.3471151
https://doi.org/10.1016/j.knosys.2020.106557

	Abstract
	1 Introduction and Motivation
	2 Research Questions
	3 Methodology and Approach
	4 Preliminary Results
	4.1 Variability-L*
	4.2 VaryMinions

	5 Work plan
	References

