
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

VaryMinions

Fortz, Sophie; Temple, Paul; Devroey, Xavier; Heymans, Patrick; Perrouin, Gilles

Published in:
Empirical Software Engineering

DOI:
10.1007/s10664-024-10473-5

Publication date:
2024

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Fortz, S, Temple, P, Devroey, X, Heymans, P & Perrouin, G 2024, 'VaryMinions: Leveraging RNNs to Identify
Variants in Variability-intensive Systems’ Logs', Empirical Software Engineering , vol. 29, no. 4, 99.
https://doi.org/10.1007/s10664-024-10473-5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. oct.. 2024

https://doi.org/10.1007/s10664-024-10473-5
https://researchportal.unamur.be/en/publications/2243662b-47f2-47b6-bfff-957c555d5355
https://doi.org/10.1007/s10664-024-10473-5

Empirical Software Engineering manuscript No.
(will be inserted by the editor)

VaryMinions: Leveraging RNNs to Identify Variants
in Variability-intensive Systems’ Logs

Sophie Fortz · Paul Temple · Xavier
Devroey · Patrick Heymans · Gilles
Perrouin

Received: date / Accepted: date

Abstract From business processes to course management, variability-intensive
software systems (VIS) are now ubiquitous. One can configure these systems’
behaviour by activating options, e.g., to derive variants handling building
permits across municipalities or implementing different functionalities (quizzes,
forums) for a given course. These customisation facilities allow VIS to sup-
port distinct relevant customer requirements while taking advantage of reuse
for common parts. Customisation thus allows realising both scope and scale
economies. Behavioural differences amongst variants manifest themselves in
event logs. To re-engineer this kind of system, one must know which variant(s)
have produced which behaviour. Since variant information is barely present in
logs, this paper supports this task by employing machine learning techniques
to classify behaviours (event sequences) among variants. Specifically, we train
Long Short Term Memory (LSTMs) and Gated Recurrent Units (GRUs) recur-

Sophie Fortz has been partially supported by the EPSRC project on Verified Simulation for
Large Quantum Systems (VSL-Q), grant reference EP/Y005244/1, the EPSRC project on
Robust and Reliable Quantum Computing (RoaRQ), Investigation 009 Model-based monitor-
ing and calibration of quantum computations (ModeMCQ), grant reference EP/W032635/1,
by the Fonds de la recherche scientifique (FRS-FNRS) via a FRIA grant and by the EOS
VeriLearn project, under grant No. O05518F-RG03

Gilles Perrouin is an FRS-FNRS Research Associate.

S. Fortz (orcid.org/0000-0001-9687-8587)
King’s College London, London, United Kingdom
NADI, Faculty of Computer Science, University of Namur, Namur, Belgium
E-mail: sophie.fortz@kcl.ac.uk

P. Temple (orcid.org/0000-0002-8276-0593)
Univ Rennes, CNRS, Inria, IRISA
E-mail: paul.temple@irisa.fr

X. Devroey (orcid.org/0000-0002-0831-7606) · P. Heymans · G. Perrouin (orcid.org/0000-
0002-8431-0377)
NADI, Faculty of Computer Science, University of Namur, Namur, Belgium
E-mail: xavier.devroey@unamur.be · patrick.heymans@unamur.be · gilles.perrouin@unamur.be

2 Sophie Fortz et al.

rent neural networks to relate event sequences with the variants they belong to
on six different datasets issued from the configurable process and VIS domains.
After having evaluated 20 different architectures of LSTM/GRU, our results
demonstrate that it is possible to effectively learn the trace-to-variant mapping
with high accuracy (at least 80% and up to 99%) and at scale, i.e., identifying
50 variants using 5000+ traces for each variant.

Keywords Configurable processes · Recurrent Neural Networks · Variability-
Intensive Systems · Variability Mining · Software Product Lines

1 Introduction

Business processes capture the activities of every profit or non-profit, public or
private organisation, coordinating humans and software to collectively deliver
value. As organisations evolve, new needs appear, e.g., covering electric scooters
for an insurance company or handling a change in the law about reimburs-
ing travel expenses at the university. These needs lead to the emergence of
process variants, differing in their control flow or performance while having
commonalities with the original processes. Process variants or configurations
are specific combinations of the system’s options. We consider process exe-
cutions stored in event logs, where an event trace (or trace) is an ordered
sequence of events. To explore process reengineering opportunities, it is neces-
sary to identify which variant(s) may have produced a given trace. Existing
variant analysis [119] techniques do not answer this question but cover the
inverse operation, i.e., focusing on the differences between identified variants.
This problem is not restricted to business processes and naturally extends to
variability-intensive systems, which change their behaviour in response to the
(de)activation of some options. Examples of variability-intensive systems include
Software Product Lines (SPLs) [6, 103], operating systems kernels [93, 111],
code generators [14,121], or web-based frameworks [57,108]. Validating these
systems is difficult because enumerating all variants, whose number can grow
exponentially with the number of options, is generally infeasible [57]. In this
context, locating variations is essential for any reengineering endeavour [9].
Black-box testing techniques can also benefit from this information to e.g.,
sample which variants should be tested first [57].

To support these activities, in this article, we train Recurrent Neural
Networks (RNNs) [107, 110] architectures with different hyperparameters (loss
and activation functions among others) to predict the candidate variant(s) that
could have produced a given event trace. We make the following contributions:

(i) the first variability-aware approach, which we called VaryMinions, to map
execution traces to variants of a system;

(ii) a detailed account on the usage of Long Short Term Memory (LSTMs) [66],
and Gated Recurrent Units (GRUs) [21], two RNN architectures, on six
different datasets, describing business processes and course management
system variants;

VaryMinions 3

(iii) four datasets openly available and based on Claroline [30, 32, 33] and
containing 2 ∗ 10 and 2 ∗ 50 configurations with 5, 000 traces per configu-
rations;

(iv) a characterisation of the intrinsic learning difficulty for variability-intensive
systems.

Methodology. For the first contribution, we showed empirically that VaryMin-
ions can distinguish 50 variants from 5, 000+ event traces per variant. In our
second contribution, we successfully determine the variant(s) responsible for
generating an event trace with high accuracy (> 80%), regardless of whether
the GRU or LSTM model is employed. To measure the learning difficulty,
we defined and computed a metric based on the amount of behaviour shared
amongst event traces.

Open Science Policy. We also provide a replication package [47] with an
implementation of our approach using two common Python frameworks reusing
RNNs implementations(namely Tensorflow [29] and Keras [22]) as well as
presenting all the results of our experiments.

These contributions extend our preliminary research published at the MaL-
TeSQuE 2021 workshop [46]. While our previous paper focused solely on
business processes, this article adds a new source of datasets issued from
the VIS domain: Claroline [30,32,33], a course management system that was
reverse-engineered from an instance in-use at the University of Namur. We
derive four new datasets from this newly added system, forming a much more
challenging learning problem (up to 50 variants instead of 5), and we assess
the effect of sampling (random uniform vs dissimilarity-based) on the outcome.
In addition, we reran all our previous experiments and the new ones at one of
the Belgian universities’ HPC facilities. We also refactored the VaryMinions
source code to ease its reuse and make it more configurable. To summarise, the
added value of this extension comes from:

(i) four new and more complex datasets from the VIS domain;
(ii) a discussion about the effect of sampling on this classification task;
(iii) a refactored implementation of VaryMinions.

Section 2 introduces process mining, VIS and RNNs. Section 3 motivates
the use of VaryMinions. Section 4 gives an overview of the proposed solution,
while Section 5 presents the datasets and the experimental setup with more
details. Section 6 gives the results of our evaluation. Section 7 discusses certain
factors influencing our experiments, such as hyper-parameter variability and
alternate labelling of variants. Section 8 presents related work, and finally,
Section 9 wraps up the paper.

2 Background

Our work tackles the problem of tracing back the system variant that produced
some event logs. This is an issue common to process variants and variability-

4 Sophie Fortz et al.

intensive systems. We address it by relying on techniques coming from the Deep
Learning community. In the following, we introduce these different concepts.

2.1 Process Variants

Nowadays, many organisations work with multiple (business) processes in
parallel that can highly depend on environmental and human factors. For
instance, a business process can be influenced by regional laws, available
resources, the size of the organisation, etc. Most of them share common
behaviours meaning that for one general business process, one can define
several process variants, each one behaving (slightly) differently from the other
variants. Similar process variants gather in process lines or process families
and can be modelled using different formalisms [106].

Analysing the specificities and commonalities of process variants allows
scale economies and helps practitioners to improve the general business process,
define new variants or maintain existing ones [119].

For process understanding and reverse engineering purposes, one commonly
inspects execution logs. Indeed, they contain valuable information on the
process behaviour in production. If the process owns several variants, one must
know which variant(s) are involved in a behaviour of interest. Unfortunately,
event logs do not usually contain information about a specific variant (or set of
variants) which (could have) produced the sequence of events (i.e., the event
trace). This can prevent practitioners from understanding why this behaviour
occurs for one variant and not another. In this paper, we address the problem of
identifying process variants that have (potentially) shown a specific behaviour,
based on a given event trace. This mapping information is key in various
re-engineering activities such as variant process mining [119]. However, these
activities are beyond the scope of this paper.

To demonstrate the feasibility of our variant process identification learning
approach, we use two datasets that gather execution traces of business processes.
They both come from the Business Process Intelligence Challenge, a yearly
challenge organised since 2011 to stimulate process mining research on real-life
datasets.1 We selected two editions, modelling process variants: the first one
from the year 2015 and the second from the year 2020.

2.2 Variability-Intensive Systems

Process families belong to the vast and heterogeneous category of Variability-
Intensive Systems (VISs). These are software-based systems that exist in
many variants to address the diversity of customer needs and usage contexts.
Structured approaches, like Software Product Lines (SPLs) [104], facilitate the
design, development and quality assurance of such systems. They consider a
global base of software artefacts for a family of software systems, and allow to

1 https://www.tf-pm.org/competitions-awards/bpi-challenge

https://www.tf-pm.org/competitions-awards/bpi-challenge

VaryMinions 5

VendingMachine
v

CancelPurchase
c

Beverages
b

FreeDrinks
f

Currency
cur

Soda
s

Tea
t

Euro
eur

Dollar
usd

Or

Xor

Opt.

Fig. 1: VIS Feature Model of a beverage vending machine [24,30].

produce variants through the (de)activation of options (also called features in
the VIS world).2 Reasoning at the family level rather than at the single system
level yields significant economies of scale and quality improvements.

Variability Modelling The variability of a VIS is usually decomposed using
a tree-like structure called a (VIS) Feature Model (FM) [72, 109]. An FM
represents the common and variable aspects of the system. For instance,
Figure 1 presents the FM of a simple configurable beverage vending machine.
The machine sells either soda or tea (or both) in euros or dollars, and may
optionally support cancelling purchases and providing free drinks. As the
number of possible variants increases exponentially with the number of options
available, such compact representation of the variability of a VIS enables various
kinds of analysis, including counting the number of possible variants, detecting
dead options that can never be selected, etc. For instance, the vending machine
of Figure 1 counts already 24 possible (distinct) configurations. 3 This number
is very small compared to real-world VISs. For example, the Claroline case,
which we will introduce in Section 5.2.2, has more than 5 million possible
configurations for 44 options.

Behavioural Modelling Complementary to FMs, Featured Transition Systems
(FTSs) [24] are designed to represent compactly the behaviour of a VIS. An
FTS is a transition system where each transition is labelled using (VIS) feature
expressions (i.e., a Boolean formula referring to its options) to indicate which
valid configurations of the VIS can execute the transition. For instance, Figure 2
presents the FTS of the beverage vending machine of Figure 1. As can be seen
from the feature expressions, only specific configurations can execute some
transitions: e.g., only vending machines with the free (f) option enabled can

2 To avoid any confusion between VIS feature, i.e., a functionality of a software system,
and machine learning feature, i.e., a property characterising an entity, we will refer to the
former as option (or sometimes VIS feature) and to the latter as feature.

3 To avoid any confusion between VIS configuration, i.e., a combination of software
options, and neural network configuration, i.e., a selection of hyperparameters characterising
a network, we will refer to the former as configuration or variant and to the latter as
parameterisation.

6 Sophie Fortz et al.

1 2 3

4

5

6

7 8 9
pay/¬f change/¬f

free / f

take / f

close/¬f

open/¬f take/¬f

cancel / creturn / c
soda / s serveSoda / s

tea / t serveTea / t

Fig. 2: VIS Feature Transition System of a beverage vending machine [24,30]

execute the free transition from state 1 to state 3. As for FMs, FTSs provide
a way to represent compactly the behaviour of all the different configurations
of a VIS.

In this paper, we rely on the FM and FTS of Claroline, a highly configurable
course management platform previously used at the University of Namur, to
simulate executions of different configurations of a real system. This simulation
offers a way to generate event logs in a controllable way without requiring
running a large number of variants of the system. The Claroline FM and
FTS were defined by Devroey et al. [30, 32, 33], based on the logs of the
implementation used at the University of Namur collected over 9 months.

2.3 Deep Learning and Recurrent Neural Nets

As explained previously, the number of possible variants grows exponentially
with the number of VIS options. Similarly, the number of traces a system can
generate is supposed to be infinite. These observations command the use of
automatic reasoning instead of manual inspections. In particular, we rely on
machine learning and deep learning techniques.

Deep Learning (DL) is a subset of machine learning techniques. They remain
statistical techniques, but the main difference is that machine learning tech-
niques rely on predefined features (or characteristics) compactly representing
data. Historically, domain experts defined the relevant features and the proce-
dures to extract them from raw data. In contrast, DL techniques can infer such
features automatically while training but at the cost of more computational
resources and time. In the last decade, DL techniques efficiently performed
different tasks and new applications such as image processing, assistance in
driving for autonomous vehicles, board gaming such as playing Go, sound
processing, text processing, automatic translation, etc.

Different families of machine learning algorithms exist: decision trees or
random forests, support vector machines, linear regressors, neural networks,
etc. Thanks to their capability to model and handle complex relations, neural
networks are at the centre of attention of DL techniques. There are various
neural network architectures, each adapted to a specific task. For instance,

VaryMinions 7

convolutional neural networks excel at image processing while recurrent neural
networks (RNNs) [107,110] handle data sequences (such as text or speech).

Previous works applied RNNs to execution traces to predict the next
event or the final execution state. [40, 118]. When data sequences are too
long, vanilla RNNs may face the so-called vanishing or exploding gradient
problem [65]. Indeed, weights from the first layers may rarely be adjusted since,
during training, the back-propagation mechanism re-injects prediction errors
backwardly in the network starting from its output layer so that it can ultimately
provide the right outcome. Because one injects errors from the output, they tend
to vanish and never reach the first layers leaving them unchanged. Conversely,
the gradient can grow exponentially, yielding intractable computations. Two
RNN architectures deal with longer sequences and long-term dependencies:
Long-Short Term Memory (LSTM) [66] and Gated Recurrent Unit (GRU) [21].
These architectures alleviate gradient issues [23, 65] by using gates to regulate
the data flow and keep specific long-term data in memory. RNNs are composed
of multiple units (sometimes referred to as cells), which can convey data from
one to another. Typically, RNNs start with an embedding layer that transforms
input data into multi-dimensional vectors.

Figure 3 depicts an example of an LSTM unit (left) and a GRU unit (right).
Inside one unit, gates regulate the data flow, deciding what data to keep and
what to forget. Mathematically, gates are functions (e.g., sigmoid) expressing
the amount of data to keep. We can define several types of internal gates for
different purposes. An LSTM unit (Figure 3a) is composed of three different
state variables and three different gates. The variables represent respectively
the input of the unit (i.e., the matrix computed by the embedding layer, called
xt in the figure), the output (called ht), and the unit state (called ct). The
latter acts as the long-term memory of the network, registering data from
previous units to pass through the next ones. Forget gates (on the left of the
Figure) are used to convey data from the previous unit directly to the next one.
In particular, it may set some values to 0, making the network forget this data.
The input gate (in the middle) defines how much data should be treated in the
current unit. The final output of a unit travels through the output gate (on
the right of the Figure). To avoid gradient explosion, LSTM units use a tanh
function (above the output gate) to keep data in a small range of value (i.e.,
between -1 and 1). In GRU (Figure 3b), input and forget gates are merged (on
the right of the Figure) and there is no output gate. Consequently, the output
and unit state variables are also combined into a unique variable (named ht in
the Figure). GRU also offers a new type of gate (in the middle of the figure)
expressing how relevant data from the previous unit is for the current unit.

LSTMs and GRUs are efficient text classifiers, e.g., [75,85]. In this work,
we want to create a mapping between execution traces that are a succession of
events occurring in a specific order and configurations of a system that, sup-
posedly, can produce them. In this context, an event does not appear randomly
but depends on the previous succession of events. Sometimes directly from the
few previous ones, sometimes because of an event that occurs way earlier in the
trace. Thus, using LSTM and GRU architectures seems appropriate. Further-

8 Sophie Fortz et al.

(a) An LSTM unit

(b) A GRU unit

Fig. 3: A unit of LSTM versus a unit of GRU

more, because of this dependency in the sequence of events, we consider traces
as text, i.e., an ordered sequence of symbols that follows a given grammar.

While RNNs are usually good fits to work on Natural Language Processing
(NLP) tasks, there is little work trying to use RNNs in the context of technical
documents or software specifications. Li et al. conducted a systematic literature
review on extracting variants from text specifications [80].

VaryMinions 9

None of the reviewed works relied on RNNs but used other classification
models (decision trees, association rules, etc.). Recently, Arganese et al. in-
vestigated ambiguity in natural requirements as variability points [7], but the
mapping concerns words rather than complete sequences.

3 Motivation: Behaviour-driven VIS Reverse-engineering via
Black-box Learning

Over the past two decades, researchers have been focused on modelling the
behaviour of SPLs for design and analysis purposes. Various paradigms for mod-
elling SPL behaviour, such as Featured Transition Systems [24] and Featured
Finite State Machines [56], have been defined. However, engineers typically
manually create these models, which is time-consuming, error-prone, and not
suitable for complex VISs. Recent efforts [26, 27] have attempted to automate
this model creation process, but it is still in its early stages.

Most approaches to learning VIS behaviour rely on and extend Dana
Angluin’s seminal L∗ algorithm from 1987 [5]. This algorithm aims to infer a
single system’s behaviour in a black-box and active manner, relying solely on
execution traces obtained on the fly. In this case, access to the source code is
unnecessary, but interaction with the System Under Learning (SUL) is essential.
L∗ follows a simple metaphor. The Learner constructs hypothesis models of the
system by posing queries to the Teacher, who serves as a middleware between
the Learner and the SUL. The Teacher can either validate the hypothesis or
provide a counterexample if it is invalid, helping the Learner to update its
hypothesis.

To adapt Angluin’s algorithm and accommodate variability, existing ap-
proaches [26,27] introduce post-processing steps. For instance, learning each
product variant and progressively merging them is one approach. However, this
approach becomes impractical when dealing with a large number of variants.
Another approach, instead of considering variants individually, would be to
consider learning the VIS in a family-based fashion [44,45]. In both cases, it
is essential to relate Angluin’s queries and counterexamples to configurations.
Existing mappings are incomplete, as they rely on partial observations of the
system. We assume that the Teacher only possesses knowledge of previously
observed SULs, with all new configurations being unknown. Hence, in this
scenario, a configuration prediction technique is required.

Existing SPL reverse engineering techniques usually assume the presence
of an accurate FM. This is a strong hypothesis. Usually, FMs are built from
requirements which are known to be ambiguous and partly implicit. FM reverse
engineering approaches also have limitations in terms of completeness and
soundness. It is much easier to assume a set of configurations especially in
reverse engineering scenarios. Therefore, we aim for a solution that does not
require an FM. In our context, we can only rely on the list of features (but
without explicitly stating the constraints between them) and a list of the
configurations used for classification.

10 Sophie Fortz et al.

To map configurations to variant products, white-box approaches rely on
the source code or use a combination of software implementation artifacts
and logs [91, 92]. We place ourselves in a strict black-box context in which
the source code is not available. This is the case for the business processes we
analysed. Therefore, we focus on execution logs only. These logs do not directly
relate event traces with variants. Indeed, Cândido et al. [19] have pointed out
that preemptively logging detailed information would result in enormous log
files, reaching several terabytes, which would impede effective analysis.

Since extensive mapping information is not available, we propose to employ
supervised machine learning to tackle the following challenge: how can we
classify new incoming traces (previously unseen) to multiple variants?

4 VaryMinions Overview

Figure 4 provides an overview of VaryMinions’ architecture. The input data (a)
are a set of available execution traces. For training, traces are associated to the
set of system variants that can produce them. The inputs first pass through an
Embedding layer (b) that transforms the sequences of events into a vector of
indexes (to make the representation more compact and to ease their processing).
The embedding layer creates a structured space in which indexes that occur in
a similar context are close. In this new representation space, indexes become
vectors, and initial traces become tensors composed of numerical weights. This
homogeneous representation allows performing mathematical operations on
those weights through the rest of the network.

The embedding layer is also configurable, e.g., we need to specify the number
of dimensions of the representation space and the number of dimensions in
the output tensors. We keep the number of dimensions the same in input
and output to avoid combining different input dimensions into one output
dimension. We then link this layer to the RNN layer (c), which is instantiated
with either LSTM or GRU units to learn the relationships between elements of
the tensors. Again, this layer is configurable, in particular with the number
and usable kinds of units (detailed in Section 5.3).

There exist unidirectional and bidirectional [110] units. Unidirectional layers
only consider the processing of the sequence in one direction (from start to
end). In contrast, bidirectional layers also handle the other direction (from end
to start), which can be helpful in language processing. In our case, traces are
fully available at training time. Reading them forward and backward can help
grasp long-term relations between events. Because of our analogy with text,
we use bidirectional units [110] only.

Then the network continues with one Dense layer (d) preparing for classi-
fication. We made the number of units in this layer the same as the number
of classes (i.e., configurations). The output of the network (e) is a vector of
1s and 0s whose number of elements is equal to the number of configurations
of the system. This vector classify the trace into one or more configuration(s).

VaryMinions 11

In this vector, 1s state that associated configurations can generate the input
trace and 0s that they cannot.

For instance, let us take a simple system with three configurations. The
output vector is thus of size three. If our prediction model outputs the vector
[1, 1, 1], it predicts that all the configurations can execute the input trace. In
another case, the output vector is [0, 1, 0]. Then, only the second configuration
is able to produce the input trace, etc.. One should note that our models
cannot provide the output vector [0, 0, 0] since the RNN selects at least the
configuration with the highest score.

Fig. 4: Description of the VaryMinions architecture

5 Evaluation Protocol

In the following, we describe our evaluation protocol to validate that we can
learn which variants may have produced an execution trace. First, we state
the research questions that drive this experimentation before describing the
creation and annotation of our datasets. Then, we explain how we instantiated
VaryMinions regarding our specific context. Finally, we present the running
setup and the evaluation metrics.

5.1 Research Questions

We state the following research questions concerning the multi-classification of
execution traces among the different VIS variants:

RQ1 How accurately can we identify process variants based on their traces?
This question addresses the efficiency of our approach. To the best of our

12 Sophie Fortz et al.

knowledge, this is the first attempt to use RNNs to learn such a mapping.
Thus, we cannot compare it with the state of the art. Instead, we expect
the RNNs to be at least better than random classifiers (accuracy higher
than > 50%).

RQ2 What is the performance of LSTMs versus that of GRUs for process traces
classification? We would like to know which model architecture is the most
appropriate for this task, if any.

5.2 Datasets selection and preprocessing

We use six different datasets that we divide into two groups. The first group
contains the 2015 and 2020 editions of the Business Process Intelligence Chal-
lenge (BPIC). Each dataset contains event logs, describing different executions
of configurable processes:

– BPIC15 (DS1) represents building permit applications in five municipalities,
each one corresponding to a process variant [38]; and

– BPIC20 (DS2) gathers data from the travel reimbursement process at the
Eindhoven University of Technology (TU/e), where variants correspond to
different kinds of documents to be managed [37].

The second group consists of four datasets containing event logs describing
executions of different variants of Claroline [30, 32], an online course manage-
ment system used at the University of Namur until 2018. Claroline was the main
communication channel between students and lecturers, with approximately
7, 000 users. Its architecture is plugin-based. Depending on needs, one can
deploy new variants at runtime.

5.2.1 Business Process Intelligence Challenge (BPIC)

The original BPIC datasets (from [37, 38]) contain only valid and complete
traces and other information. We prune the logs to keep only the process
variant ID, the trace ID and the sequence of events. To cope with different
trace lengths, we apply padding (i.e., filling traces with other meaningless
events and using a mask to know where the processing should stop). Trace
duplicates are removed, and since multiple variants can produce the same
trace, we encode the variants into a binary vector (where the size matches the
number of variants) that serves as a label. A value of one at the i -th index of
the vector denotes that we observed at least once the trace associated with
variant i. Traces associated with all variants have thus a vector full of ones. In
the end, each trace is associated with one or more variants (i.e., classes). We
expect the RNN models to learn these associations to predict the variant(s)
for an unlabelled trace. We wrote this preprocessing procedure in Python as
part of VaryMinions’ implementation [47].

As described in Table 1, DS1 contains 5, 542 traces after preprocessing, with
a maximum of 154 events per trace. The five process variants are fairly equally

VaryMinions 13

represented since they contain 1, 108 traces on average, with a minimum of 828
and a maximum of 1, 350. Therefore, DS1 is well-balanced. DS2 contains 2, 074
traces after preprocessing, with 5 process variants and a maximum of 90 events
per trace. The least and most represented process variants contain 89 and
1, 478 traces respectively, with an average of 415 traces per variant. Therefore,
the dataset is imbalanced, suggesting it is harder to learn from accurately.

Table 1: Overview of the preprocessed datasets used in our experiments. Class-
specific metrics (cols 3–5) represent (i) the number of traces per class, (ii) the
percentage of traces assigned specifically to this variant in the dataset, and
(iii) the percentage of traces shared by this variant and at least another one.

Dataset Class Id # Traces
% Variant-specific

behaviour
% Shared
behaviour

DS1
(BPIC15)

5,542 traces

Munic. 1 1170 99.658 0.342
Munic. 2 828 99.638 0.362
Munic. 3 1350 99.778 0.222
Munic. 4 1049 99.905 0.095
Munic. 5 1153 99.827 0.173

DS2
(BPIC20)

2,074 traces

Int’l Decl. 753 30.013 69.987
Dom. Decl. 99 100 0.0
Permit Req. 1478 64.344 35.656

Prepaid 202 90.099 9.901
Req. For Pay. 89 77.528 22.472

DS3
(Clar. Dis. 10)
50,000 traces

Variant 1 5000 100 0
...

Variant 10 5000 100 0

DS4
(Clar. Rand. 10)

50,000 traces

Variant 1 5000 100 0
...

Variant 10 5000 100 0

DS5
(Clar. Dis. 50)
250,000 traces

Variant 1 5000 100 0
...

Variant 50 5000 100 0

DS6
(Clar. Rand. 50)
250,000 traces

Variant 1 5000 100 0
...

Variant 50 5000 100 0

To better characterise the learning complexity, Table 1 shows the number
of traces per class (i.e., variant) and the overlap (i.e., percentage of variant-
specific and shared behaviour) between classes. The number of traces provides
a first indication of the learning difficulty: more traces generally yield a more
accurate network once trained. DS1 contains equally represented classes with
limited overlap (< 0.5% in the last column), while DS2 is less balanced in
how classes are represented and how they are interleaved, denoting a shared
behaviour between multiple variants. In particular, for DS2, there is a big
overlap between the International Declaration and the Permit Request variants,
and between the Prepaid Travel Cost and the Request For Payment variants,
while the Domestic Declaration variant is completely separated.

14 Sophie Fortz et al.

5.2.2 Claroline

Claroline is a highly configurable web-based system whose behaviour depends
on a set of activated options. In total, Claroline contains 44 options leading
to more than 5, 406, 700 unique variants. Handling such a large configurable
system is not trivial as it requires deriving different variants and executing them
in various ways to trigger different behaviours and collect, format, and process
the corresponding event logs. Setting up such pipelines is hard and outside the
scope of this paper. For those reasons, we decided, instead of executing the
actual system, to simulate executions of different variants using a Featured
Transition System (FTS) capturing the behaviours of different configurations
of Claroline. The FTS was reverse-engineered by Devroey et al. [30,32] from
a 5.26 Go Apache webserver log containing 45, 210, 987 entries collected from
January 2013 to September 2013 using a bigram inference method. The final
FTS consists of 106 states and 2, 053 transitions.

Simulations. The simulation of a given Claroline configuration works as follows.
First, the FTS is projected on the configuration (i.e., pruned) to keep only the
subset of behaviours that can effectively be executed by the configuration. The
result of that process is a classical transition system, describing a subset of the
behaviours of Claroline. Second, the traces associated with the configuration
are produced using random walks in the transition system. We generated 5, 000
traces per configuration. To avoid infinite traces (e.g., in case of a loop in the
transition system), we also limited the size of a trace to 300 events. We relied
on VIBeS [31,34], a model-based testing tool for highly-configurable systems,
to project the FTS and generate the traces.

We relied on two different strategies to select the different simulated Claro-
line configurations: random selection and dissimilarity-based selection. The
random selection consists in selecting a set of (valid) configurations using a ded-
icated generator ensuring a random distribution of the selection. In our case, we
used CMSGen [54], a fast uniform-like sampler. CMSGen comes with a default
parameterisation, which we reused as is.4 Unlike random, dissimilarity-based
selection [62] picks configurations in such a way that they are as dissimilar as
possible when considering their selected options. For our evaluation, we used
PLEDGE [63], a search-based dissimilarity-driven configuration selection tool.
We selected the default parameterisation of PLEDGE, with one minute per
generation. We have set the number of configurations to simulate to 10 and 50.
This way, we can go beyond the difficulty provided by the BPIC datasets and
check that our method can run when the number of configurations is higher.
While 50 is still small compared with the number of possible unique variants
of Claroline (i.e., > 5, 000, 000), it is closer to a realistic setting.

Event logs datasets. We have derived the four different event logs datasets
based on the following sets of configurations of Claroline:

4 See https://github.com/meelgroup/cmsgen for details.

https://github.com/meelgroup/cmsgen

VaryMinions 15

Claroline Dissimilar 10 (DS3) regroups execution traces of 10 different
configurations of Claroline, selecting the most dissimilar sets of options. This
dataset should lead to more discriminated traces and better classifications.

Claroline Random 10 (DS4) gathers traces from 10 different instances of
Claroline, randomly chosen to have a more realistic dataset.

Claroline Dissimilar 50 (DS5) is similar to DS3, but with 50 configurations
to allow more diversity.

Claroline Random 50 (DS6) is similar to DS4, but with 50 configurations.

For each of these datasets (DS3 to DS6), the output of this generation
process is a file containing 5, 000 traces per configuration that we can use as
an input for VaryMinions. In our case, we thus have either 50, 000 traces per
file (for 10 configurations) or 250, 000 traces per file (for 50 configurations), as
shown in Table 1. The last two columns of this table show systematically 100%
of variant-specific behaviour and 0% of shared behaviour for Claroline datasets,
meaning that for each trace, at least one action is specific to one variant of
Claroline. This is due to the use of a sampler for selecting the configurations,
giving very little control over the traces overlap. Due to the huge amount of
possible variants (i.e., > 5, 000, 000), the chance to find any shared behaviour
between multiple variants is almost zero.

5.3 RNN Parameterisations

As we said before, because we use sequences of events, we investigate the
use of RNNs to learn to which configuration(s) we can associate a trace.
More specifically, we focus on LSTMs and GRUs. As for many DL models,
hyperparameters must be defined. Because there are so many, we decided to
vary only a few of them to try to understand how much impact they may have
on learning. We focused on the functions that are used inside the networks and
that may impact the quality of the predictions. We also manually selected a
subset of hyperparameters that we fixed to a specific standard value. Hyper-
parameters and their values are described in detail hereafter and summed up
in Table 2.

Number of hidden layers. One specific aspect that impacts the learning capa-
bilities of neural networks is their topology. Since the traces are short compared
to text documents, we decided to use networks with only one hidden layer. It
may avoid potential overfitting, that can emerge from more complex structures
(e.g., auto-encoder) while offering satisfactory prediction performance.

Units. In our previous work [46], our experiments used different numbers
of units regarding the RNN layer (c). This number affects the topology of
the network and may help to grasp more complex concepts if this number
increases. Yet, having too many units on a layer may lead to dealing with
redundant information that will deteriorate the final prediction performances
of the network [49]. On the contrary, a layer with a smaller number of units
may not have the capability to grasp interesting information which may also

16 Sophie Fortz et al.

harm the prediction performances [49]. Based on our previous experiences,
we decided to set the number of units to 30 which has shown relatively good
performances while limiting the training time.

Training set, batch size and epochs. Other hyperparameters can be
set affecting the training time and the optimisation of the many different
parameters (e.g., weights between layers and units) of the networks. Common
hyperparameters to set are the ratio of data used to train the model and those
used to evaluate the performance of the model; the size of the batch of data
that the model will have to deal with during training, which may mitigate
overfitting; and the number of time the model will optimise parameters over the
whole training set (i.e., the number of epochs). Each of these hyperparameters
was set as follows:

(i) the percentage of the data used for training is set to 66% of the whole
dataset which is a common value in the ML community, the remaining
traces are used in the test set to assess the generalisation performances
of the trained models;

(ii) we set the batch size to 128, which is adapted to the dataset size;
(iii) we set the number of epochs to 20 to avoid overfitting. In our preliminary

evaluations (evaluated between 10 and 50 epochs), a plateau was reached
after approximately 15 epochs. We finally set the number of epochs to
20, to allow for small increases in accuracy.

Activation functions. Activation functions are defined at the level of units
(i.e., neurons) and respond to an input signal. If the signal is strong enough,
the neuron is activated and the output is also high. Though different activation
functions can be used for each neuron, it is usual to define an activation
function for an entire layer. We have used a Rectified Linear Unit (ReLU)
function on the hidden layer RNN layer (i.e., (c) in Figure 4) to alleviate the
vanishing gradient problem. Regarding the Dense layer (d), we experimented
with two common activation functions that are sigmoid and hyperbolic tangent
(tanh). Both are shown in Figure 5. The main difference between both is their
definition domain which affects how they handle negative input values. The
sigmoid function is defined over [0; 1] meaning that as the values get closer to
−∞ the neuron is closer to being non-activated at all (i.e., the output signal
is 0) while as the input values are getting larger the response is also getting
larger. When the input value is 0, the response is 0.5. On the other hand,
tanh is defined over [−1; 1]. It may be useful to take into account negative
correlations and when the input value is 0, the response is also 0. Using one
or the other may affect the “strength” of the signal that will reach the last
layer for classification in turn affecting which class (i.e., configuration) will be
recognised.

Loss functions. Loss functions are used during training to optimise the weights
of the networks by back-propagating errors. We have used three loss functions
already implemented in tensorflow 5, namely Binary Cross-Entropy (with and

5 https://www.tensorflow.org/api_docs/python/tf/keras/losses

https://www.tensorflow.org/api_docs/python/tf/keras/losses

VaryMinions 17

Fig. 5: Sigmoid (blue) and tanh (orange) function responses represented by the
Y-axis depending on the input signal (X-axis).

Table 2: Hyper-parameters settings

Hyperparameter Considered values
Type of Classifier GRU, LSTM

Units 30
% Training Set 66%

Batch Size 128
Epochs 20

Activation Function sigmoid, tanh

Loss Function
Bin-CE, Bin-CE logits, MSE,
Weight Jaccard, Manhattan

without logits, respectively named hereafter Bin-CE and Bin-CE logits) and
the Mean Squared Error (MSE). Logit is defined as the inverse function of
the sigmoid. We also implemented two custom loss functions: a variant of the
Jaccard distance [69] (named Weight Jaccard hereafter), and the Manhattan
distance between two vectors. The motivation for these two last functions is
that because a single trace might be assigned to different process variants, the
error should be defined considering a comparison of elements of vectors but
not from a single value. This difference between two vectors should define a
distance score. The Manhattan distance (sometimes called L1 norm) computes
the sum of absolute differences between each element of the two vectors (i.e., in
this case, the process variants). The Jaccard distance assesses how many equal
elements of two vectors are over their size. We have implemented a variant
of the Jaccard distance to cope with floating-point values generated by the
networks. The Jaccard distance was employed to evaluate trace dissimilarity in
variability-intensive systems (e.g., [35]). Further discussions about the use and
characteristics of these loss functions are provided in Section 7.2.

18 Sophie Fortz et al.

5.4 Model Training

We decided to use only a training set and a test set in our evaluation due to the
number of available execution traces. The training and performance evaluation
process is done as follows: i) the entire dataset is randomly split into training
and test sets. We have used the Keras function train test split 6 that ensures
the data distribution of classes among the two sets are similar. ii) A model is
trained using the training set. iii) Its prediction performances are evaluated on
the test set. To mitigate biases in our analyses we decided to train and evaluate
the performances of each parameterization ten times on each dataset. For each
run, the whole training and performance evaluation process is started again
(i.e., splitting into training and test sets, training the model, and evaluating
its performances). The fact that the splits are done each time mitigates the
chances to train and evaluate a model on the best sets solely. Not only that it
may change the data used for training the model but it may change the order
of appearance too, which may have an impact on the trained model.

5.5 Evaluation Metrics

This work is the first attempt to use RNNs to classify execution traces among
variants of a system. One of our goals is to evaluate if such a DL technique is
appropriate for this task. We thus computed four different standard metrics
that are Accuracy, Precision, Recall, and F1-score.

Accuracy. To evaluate the quality of the models that have been learnt, the
usual metric is the Accuracy measure. Accuracy is defined as

Acc =
Number of correct predictions

Total number of predictions
(1)

It is a standard measure in the ML community to assess how well a model
performs from a high-level point of view. It has the advantage to be easily
computable and it can also be used to refer to the number of wrong predictions
(i.e., 1−Accuracy).

However, when classes are not well balanced (i.e., the number of traces is
way more important for at least one class than for others), Accuracy may hide
some important information as the number of correct predictions for the classes
with more data may take the lead on the number of wrong predictions of the
others resulting in a high ratio. To mitigate this aspect from our analysis, we
only consider other measures.

Precision. One usual metric to account for the performances of a prediction
model is its precision. It can be calculated for each class as follows:

Precision =
Number of correct predictions

Number of predictions for the class
(2)

6 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

train_test_split.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

VaryMinions 19

where Number of predictions for the class is the number of correct predic-
tions and the number of additional data that are wrongly predicted to belong
to the class (i.e., false positives).

We gathered all these individual precision measures into a global one using
a weighted average:

Prec =

∑c
i=1 Precisioni ∗ suppi
Number of data

(3)

where c is the number of classes, Precisioni the precision measure for class i,
and suppi the number of data with label i.

Recall. Similarly to the precision, the recall is also standard to report on the
predictions of a model. It can also be calculated for each class and is defined
as follows:

Recall =
Number of correct predictions

Number of labeled data for the class
(4)

where Number of labeled data for the class is the number of data labelled
with the class under consideration.

Similarly to the precision, we computed a weighted average to get an overall
recall measure for the model:

Rec =

∑c
i=1 Recalli ∗ suppi
Number of data

(5)

where c is the number of classes, Recalli the recall measure for class i, and
suppi the number of data with label i.

F1-score. The F1-score is obtained through the harmonic mean of precision
and recall to get an overview of the global performances of the model in one
single measure. The F1-score in the case of two classes is defined as:

F1− score = 2
precision ∗ recall
precision+ recall

(6)

Again, we can apply this calculation on each class and average with a
weight equal to the proportion of data of each class in the (test) set to get
an overall value for the model. The three last metrics were computed by the
precision recall fscore support 7 function in Scikit Learn before being averaged.
Also, we did compute confusion matrices 8 for each class. They are available in
our replication package.

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

precision_recall_fscore_support.html
8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

precision_recall_fscore_support.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html

20 Sophie Fortz et al.

5.6 Running infrastructure

Finally, Table 2 shows: 2 models×1 #units×1 %training set×1 batch size×
1 # epochs × 2 activation funtions × 5 loss functions = 20 different pa-
rameterisations of RNNs. We conducted these experiments on three different
HPC facilities hosted by the CÉCI.9 On the first cluster, called Dragon1, we
used 1 CPU with 8 cores per task (Intel Sandy Bridge, E5-2650 processors at
2.00GHz) with a Tesla Kepler accelerator (K20m, 1.1 Tflops, float64). For runs
on Dragon2, we used 1 CPU with 12 cores (Intel SkyLake, Xeon 6126 processors
at 2.60 GHz) associated with an NVidia Tesla Volta V100 accelerator (5120
CUDA Cores, 16GB HBM2, 7.5 TFlops, double precision). On the third cluster,
Hercules, we had access to 1 CPU with 8 cores per task (Intel Sandy Bridge,
Xeon E5-2660 processors at 2.20 GHz) with an NVidia GeForce accelerator
(RTX 2080 Ti, 7.5 TFlops, double precision). Each CPU has been allocated
3 GB of RAM. All our scripts are written in Python 3, with the Keras and
Tensorflow frameworks for deep learning. Our replication package is openly
available [47].

We conducted a 10-fold validation, where for each fold we randomly defined
different train and test sets. For each fold, we evaluate the model by computing
all the metrics described in Section 5.5. In total, running our 20 different
network parameterisations with 10 repetitions on the six different datasets,
resulted in 20 × 10 × 6 = 1, 200 runs and more than 151 days of execution.
The time needed for a single execution varies between 44 seconds and 13 hours
depending on the dataset and the GPU type.

6 Evaluation Results

In this section, we answer our two research questions separately based on:

– box-plots presented in Figures 6 to 9, showing accuracy, precision, recall
and F1-score for each parameterisation of each dataset;

– a multi-comparison statistical analysis (see Figure 10), using Friedman’s
test with Nemenyi’s post-hoc analysis;

– Tables presented in Appendix A, with average and standard deviation for
the four computed metrics.

All the results (i.e., for each execution of each parameterisation) are also
available in our replication package [47], including the code to compute the
metrics, box-plots and statistical tests.

6.1 Performance (RQ1)

Table 3 reports the averaged accuracy (over 10 runs) of the 20 considered
parameterisations of RNNs, over the 6 datasets (i.e., 120 models). We group

9 http://www.ceci-hpc.be/

http://www.ceci-hpc.be/

VaryMinions 21

Table 3: Number of RNN parameterisations reaching predefined accuracy
thresholds. We take into account 120 parameterisations. Accuracies are averaged
over 10 runs on each dataset. Each cell indicates the number of times a given
RNN model type (column) reaches the threshold (row). The last column gives
the total (LSTM+GRU) per accuracy range.

Accuracy LSTM GRU Total
accuracy > 70% 23 21 44

50 < accuracy < 70% 8 7 15
accuracy < 50% 29 32 61

into LSTM and GRU (columns) and the average accuracies into three categories
according to a predefined threshold: i)below 50% where we consider models
as performing worse than a random assignment to system variants and thus
useless; ii) between 50% and 70% where we consider models as being slightly
better than random assignments; iii) over 70% where we consider the models
as performing well. Out of the 120 models, 44 RNNs parameterisations (first
row) yield an accuracy higher than 70%, 15 are between 50% and 70%, and
the remaining 61 have an accuracy below 50%. It means that nearly half of the
considered models perform better than a random guess, a majority of which
(i.e., 44 parameterisations out of 59) performs well in our context.

The highest averaged accuracy for datasets BPIC15 and BPIC20 (top of
Figure 6, or Tables 4 and 5 in Appendix) is 88% and 87% respectively with
high stability (i.e., low standard deviation). On BPIC20, only five parameter-
isations out of twenty do not reach 50%. Even better, for BPIC15 only five
parameterisations are lower than 70% of accuracy. Top of Figures 7, 8 and 9
confirm these results by giving similar values for precision, recall and F1-score
respectively.

Despite the complexity of Claroline datasets, at least one parameterisation
obtains an averaged accuracy of 80% for each dataset. For Claroline Dissimilar
10 (middle left of Figure 6 and Table 6 in Appendix), the top parameterisation
reaches 99.6% and 4 different parameterisations are above 85%. Claroline
Random 10 and Random 50 (middle and bottom right of Figure 6, or Tables 7
and 9 in Appendix) also have several parameterisations above 80%, and their
top one gets over 95% of accuracy. Claroline Dissimilar 50 (bottom left of
Figure 6, or Table 8 in Appendix) has only one row with an averaged accuracy
of 80% and only two other rows above 70%. Among the remaining, 15 rows are
below 30%.

Note that, for Claroline Dissimilar 50, boxplots are either spread out or
centred on low values (Bottom left of Figure 6). Moreover, the top three rows
also report a high standard deviation for the accuracy (i.e., higher than 0.13
and up to 0.38, in Table 8 in Appendix). It highlights that the results lack
stability: at least one execution out of ten does not belong to the same value
range. Regarding Claroline Random 10 and Claroline Random 50 (middle and
bottom right of Figure 6), the top three parameterisations show very compact
boxplots with few outliers. This suggests a more stable accuracy, as confirmed

22 Sophie Fortz et al.

Fig. 6: Boxplots showing the Accuracy over 10 runs for each parametrisation
of each dataset.

by a standard deviation between 0.03 and 0.11 for the accuracy (Table 7 and
Table 9 in Appendix). The top two parameterisations of Claroline Dissimilar
10 (Table 6) both show an accuracy higher than 0.99 and a standard deviation
lower than 0.001, demonstrating very stable results.

Overall, the number of configurations of the Claroline system (10 or 50)
neither influences averaged accuracy nor the standard deviation. Similarly,
how we sample (random-based or dissimilarity-based) configurations does not
impact accuracy. As for BPIC15 and BPIC20, the other metrics (precision,
recall and F1-score presented respectively in Figure 7, 8 and 9) only confirm
this analysis as they follow the same tendencies.

VaryMinions 23

Fig. 7: Boxplots showing the Precision over 10 runs for each parametrisation
of each dataset.

Answer to RQ1 (performance): we were able to train RNNs providing
an accuracy above 70% (and even above 80%) for each dataset. On
Claroline Dissimilar-10 the accuracy can reach 99.6%. The associated
standard deviations can be small (i.e., < 0.01) but they are usually higher
with the Claroline datasets, regardless of the number of configurations
used or the way we select them. Yet, these results suggest there is potential
to use RNNs to automatically classify newly generated execution traces
among the variants of a system rather than trying to do it manually.

24 Sophie Fortz et al.

Fig. 8: Boxplots showing the Recall over 10 runs for each parametrisation of
each dataset.

6.2 LSTM vs. GRU (RQ2)

Our second RQ is about the prevalence of each type of RNN. Can LSTM
or GRU be considered better and should be preferred in this context? To
answer this question, we hypothesize that one kind of RNN prevails over the
other one and performs a multi-comparison statistical analysis of each 20 RNN
parameterisations on all 6 datasets. We used a Friedman’s non-parametric
test [48] with a significance level α = 0.05. This test ranks parameterisations
over accuracy and then determines if the differences between parameterisations
are significant. We further complete this result with Nemenyi’s post-hoc proce-
dure [70, 96] indicating the statistical differences between parameterisations.
This procedure can determine equivalence classes, regrouping parameterisations
that are statistically similar regarding accuracy.

VaryMinions 25

Fig. 9: Boxplots showing the F1-Score over 10 runs for each parametrisation of
each dataset.

Figure 10 shows the results of Nemenyi’s test. After executing Friedman’s
test, we obtain a p-value under 0.001, meaning that there is a statistical
difference between the accuracy of some of the parameterisations. Nemenyi’s
post-hoc procedure shows that the minimum distance between two statistically
different groups of parameterisations (i.e., the critical distance) is 3.828. The
bottom of Figure 10 shows the seven best parameterisations over all the datasets.
Statistically, they are equivalent and perform better than the remaining others
(belonging to a different group).

Four pairs of loss and activation functions out of ten seem to stand out
from the test. They are:

– MSE and sigmoid
– binary cross-entropy and sigmoid
– binary cross-entropy with logits values and sigmoid

26 Sophie Fortz et al.

Fig. 10: Result of Friedman’s statistical test along with Nemenyi’s post-hoc
analysis over all datasets and parameterisations

– MSE and tanh (with LSTM only)

For most datasets, these parameterisations can predict the right set of
variants with an accuracy greater than (or very close to) 70% (confirmed by
Figure 6 and Appendix A). However, sometimes a combination also gives bad
results. It is the case with MSE and sigmoid, both with LSTM and GRU,
where accuracy does not exceed 0.25 for Claroline Dissimilar 50 (Table 8).

We can observe that the dedicated loss functions (Manhattan and Jaccard
distance) give terrible results compared to the other “classical” loss functions.
Nemenyi’s procedure (Figure 10) assigns them the highest mean ranks. For all
Claroline datasets, the accuracy is always under 30%. On BPIC15 and BPIC20,
they give better results (respectively up to 82% for BPIC15 and up to 58% for
BPIC20) but still lower than the other loss functions.

VaryMinions 27

Regarding the activation functions, our statistical analysis shows that 6 out
of 7 best parameterisations use sigmoid instead of tanh.

Nemenyi’s procedure shows that LSTMs are present in 4 of the top pa-
rameterisations and GRUs in 3 of them. However, these parameterisations
are indistinguishable regarding accuracy (i.e., critical distance < 3.823). Ap-
pendix A shows that the best parameterisation is an LSTM for BPIC15, BPIC20
and Claroline Dissimilar 50, but it is a GRU for the three other datasets. GRU
is also the model giving the best accuracy amongst all datasets with up to
99, 6% for Claroline Dissimilar 10 (Table 6). Moreover, the count of LSTMs
and GRUs in each category of Table 3 shows similar numbers and indicates
that using GRU or LSTM does not influence the results.

Answer to RQ2 (classifiers): In the top combinations of all six
datasets, we observed mixed performance of LSTMs and GRUs, with
no absolute winner. A statistical comparison showed that 4 out of 7
parameterisations use LSTMs, without any significant difference between
the 3 parameterisations using GRUs. Moreover, GRU gives better results
on 3 of the datasets (Claroline Dissimilar 10, Claroline Random 10 and
Claroline Random 50). Hence, we cannot conclude the prevalence of one
over the other for these six datasets. Moreover, our results suggest using
the sigmoid activation functions rather than tanh.

7 Discussion and Future Work

This section discusses threats to validity that we identified and other aspects
driving our future works.

7.1 Threats to Validity

Internal validity. The datasets we used contain clean and consistent traces
(i.e., they omit inconsistent traces when the system crashes or an unexpected
event occurs). The BPIC community ensure this property [37, 38] or by the
use of an FTS model and the VIBeS framework [31,34] as a trace generator
(for Claroline). For a new VIS, a preprocessing step should take care of trace
consistency (i.e., a trace should capture a complete user session). It does not
entail that the dataset captures the whole system’s behaviour. Indeed logs and
models inferred from them represent a partial view of it.

To assess the difficulty of the learning process (i.e., being able to map logs
to variants while sharing parts of the traces), we defined our own metrics (see
last two columns of Table 1). This definition is inspired by our experience in
analysing VISs where commonalities and variabilities between behaviours are
key to the analysis. These metrics come from the analysis of the dataset only and
give a better understanding of the intrinsic complexity of the learning problem.
While they are fairly simple and high-level, they can be computed quickly but

28 Sophie Fortz et al.

do not provide fine-grained differences (as the Levenshtein distance [79] would
do but at the cost of longer computations). Finding the right trade-off between
simplicity to compute and precision is left to future work.

The deep learning community is very active, leading to new types (or
combinations of types) of models appearing every few months, especially for
image processing tasks, where competition is fierce. It is less so regarding
models dedicated to time sequences. We selected LTSMs and GRUs for their
ability to deal with temporal sequences and to evade the vanishing or exploding
gradient issue.

We evaluated 20 distinct parameterisations of RNNs over six datasets. We
designed them regarding our goal, based on our previous work [46]. How-
ever, since exhaustive coverage of the hyperparameter space is impossible, we
may have missed some relevant parameterisations. Dealing with the inherent
variability of hyperparameters is a research challenge per se.

A way to optimise the parameterisations is to use hyperparameter tuning
techniques such as random search or auto-ML [94]. We did not use any in this
work but tried to scope the parameterization space with a manual approach
similar to a grid search approach [46]. One motivation for this choice is that
VaryMinions is the first effort to use RNNs to classify execution traces for
variants of systems. Thus, we were not interested in finding the best-performing
model (aka the goal of hyperparameter tuning). Rather, we show that, within
a reasonable effort, finding a suitable RNN model parameterisation performing
well is possible.

External Validity. Compared to our initial results [46], we augmented our
experimental setup using Claroline, a VIS. Though our method applies to two
different application domains, we cannot ensure that it generalises to all config-
urable systems. We used six different datasets having different characteristics
that mitigate the fact that our method may work only on simple datasets.
Among the ones we have used, some were taken from existing competitions
(BPIC), and some were generated from scratch (Claroline) allowing us to vary
and control the complexity of the learning by modifying the amount of traces
available and/or the number of configurations to deal with. Let us note that
reverse-engineered models from logs necessarily form an incomplete representa-
tion of the behaviour of the system. Indeed, logs cannot capture all execution
traces that are often infinite for any real-world system. Besides, we do not
guarantee that our cases cover the whole spectrum of VIS, given their diversity
and widespread.

A problem when using DL techniques in such a context is imbalanced repre-
sentations in the training set. The training set may contain fewer occurrences
of a configuration of a system or a process (e.g., because of lower popularity
or fewer actions need to be performed) with the risk that the trained model
may neglect classification errors involving these configurations since they can
be considered as rare events. While the Claroline datasets were generated in
such a way that imbalance representations were limited, we had no control
over the BPIC datasets. They exhibit configuration imbalance but our RNN

VaryMinions 29

models coped with it (i.e., successfully classifying traces belonging to these
configurations). Thus, we took no further actions to mitigate this aspect. Of
course, class imbalance impact is case-specific.

Replicability. To prevent potential replicability issues, our implementation of
VaryMinions and all the results presented in this paper are publicly available
on Zenodo for long-term storage [47].

7.2 Hyperparameter Variability

The use of RNNs in this context requires carefully dimensioning the net-
work and considering many parameterisations that can influence classification
performances. In what follows, we discuss two elements that may influence
them.

Loss functions. We use the mean squared error (MSE) to evaluate prediction
errors while training a network, which is traditionally preferred when tackling a
regression problem. However, Hui and Belkin [67] showed that this assumption
lacks solid theoretical foundations and that MSE is suitable for classification. In
particular for NLP applications, where MSE usually outperforms cross-entropy.

The choice of the loss function is tricky since we need to take care of
multiple aspects: the formalisation of the problem (e.g., single or multi-label,
regression or classification) or the way to compute errors. Even when trying
to choose the loss function according to these points (e.g., Jaccard distances
have been used to solve SPL problems, as in [35]), our results indicate that the
MSE works surprisingly well. Given the importance of a loss function on the
observed performance, experimenting with additional loss functions appears
promising. For example, the focal loss [84], which penalises more misclassified
instances than well-classified ones, is a perspective that we aim to follow.

The interplay of Losses and Activations. We deliberately chose to explore
custom loss rather than activation functions. Loss functions are easier to adapt
to the problem at hand (by quantifying how far we are from the true label)
acting on the network output. Yet, activation functions and loss functions have
distinct roles in the network, and they should be considered complementary
and not independent. Both are important in the learning process. Activation
functions come after every layer inside the network and, together with the
weights, set the importance of a specific neuron through the propagation of
the network. Loss functions are defined at the end of the network and are used
to provide the final class(es). Loss functions are also used to back-propagate
the classification errors through the network to optimize the weights in the
training phase. From this short description, it is clear that activation and loss
functions’ interactions affect the model performance. The former may block or
lower the importance of discriminative information if incorrectly set while the
latter defines the distance from the labels, from which the network optimises
itself. Hence, assessing the impact of one type of function alone is not possible.
Further investigations on which combinations would be best suited are needed.

30 Sophie Fortz et al.

Defining new custom activation functions for this specific context is a possible
option.

Complexity of the neural networks We argued that learning a trace-to-
variant mapping was feasible due to the number of traces w.r.t. the limited
number of process variants. Generally, the challenge lies in the fact that having
temporal sequences forces dependencies between elements that are usually
learned separately. We suppose that deeper RNNs (i.e., increasing the number
of hidden layers) may have a positive impact. Adding more layers increases
the complexity of the model (as well as requires more resources for training),
but allows for a more accurate mapping between traces and variants. Yet, the
risk of overfitting must not be neglected. In the future, we will also consider
architectures such as auto-encoders to produce a compact intern representation
of traces, that could be more efficient in discriminating them according to the
process variants. Similarly to other application domains (e.g., image or speech
processing), learning more compact representations could rely on new feature
descriptors instead of only considering events of a trace.

7.3 Variant-based vs. Option-based Labelling

Our results indicate that applying classification techniques on a variant-based
approach (i.e., identify the variants producing a specific trace) using RNNs
is promising. However, it has a major drawback: being able to predict that
a trace is generated by a variant requires seeing at least one (usually much
more) trace(s) generated from this variant. Said differently, enumerating all the
variants and executing them all at least once is required for further predictions.
If in our evaluation the number of variants was limited, the combinatorial
explosion problem inherent to VISs may prevent us to apply these techniques to
larger configurable processes like, for instance, continuous integration workflows
with hundreds of options, leading to an intractable number of possible variants.

One future possibility to address this limitation is to work on data repre-
sentation. Indeed, a variant is formed by a combination of (Boolean) options,
corresponding to a configuration of the system. If we cannot enumerate variants,
enumerating options is possible. In this case, we need a new representation
which can depict the three states of each option: activated, deactivated or
undetermined (i.e., the presence of the option is not relevant for the current
context). The neural network will learn a partial configuration allowing for a
more fine-grained mapping. This would be useful to locate precisely a combi-
nation of options yielding a given anomalous event trace. One can use such
learned models in fault localisation and repair techniques [41]. As all labelling
approaches, this new option-based approach is a costly task, but unlike a
variant-based approach, it is feasible. For example, in Claroline [30, 32] we
have more than 5 million variants but only 44 different features. However, this
new approach comes with its own challenges. Predicting the wrong features
can potentially lead to a violation of the FM’s constraints, creating an invalid
configuration.

VaryMinions 31

7.4 Data availability

As for any DL technique, the issue of data availability is also present in
this work. We managed to train our models with few execution traces (i.e.,
thousands) compared to the potentially infinite number of traces that the
considered systems can produce. However, VaryMinions remains a supervised
machine-learning technique and requires a set of execution logs, labelled with
the variants of the system that have produced them.

To reduce the labelling effort, the recent field of semi-supervised learning [20]
techniques seems interesting. Semi-supervised learning takes place when, in the
training set, some data have labels but a majority of them are unlabelled (e.g.,
due to prohibitive cost in labelling that cannot allow labelling more than a few
tens). The goal is thus to learn a model while being able to label automatically
the unlabelled data. In this area, label propagation [68, 78] automatically
assigns a new label via propagating the label of already known similar data.
We envision using the same technique (or an adapted version) to reduce the
labelling effort while being able to take into account more and more execution
logs which may improve the prediction performances of VaryMinions models.

8 Related Work

This paper focuses on using DL techniques to reverse-engineer configurations.
However, it is not the only context where DL has been used in conjunction
with business processes or SPLs. This section gives an overview of existing
approaches where both DL and variable systems meet.

8.1 Machine Learning for Process Monitoring and Mining

Machine learning, in particular deep learning, has been notably used in business
process monitoring. For instance, ML models can use past observations to
predict the next event in a process [36, 90, 118, 120, 128], the outcome of a
process [15,76, 130], the remaining time [117,133], vulnerabilities and anoma-
lies [13,61,98–100] or even performance [101]. This vast research area called
predictive business process monitoring, attracted several literature reviews
(e.g., [60, 97]). ML can also be used to optimise existing processes [42] or
to get a compact representation of traces [16, 17]. Recently, there has been
interest in the interpretability of RNNs models, specifically in a process mining
context [59].

Han et al. [58] use LSTM to discover automatically business processes from
textual documentation. However, their work is focused on single processes and
does not highlight variability.

32 Sophie Fortz et al.

8.2 Engineering Configurable Processes

When trying to (reverse-)engineer configurable processes or even perform
maintenance and/or evolution, some of the reported techniques rely on grammar-
based or evolutionary algorithms, while others are machine learning (ML)
oriented. The latter mostly consider tasks like clustering traces (e.g., [115]).
However, few techniques allow to retrieving a complete configurable process
from event logs. Some approaches use genetic algorithms [18, 77], but they are
limited to a small number of variants. Another option is to use (configurable)
process fragments to rebuild the configurable model [10]. Sikal et al. propose a
pattern for variability discovery during process mining, but this approach is
only methodological at this stage [114].

In our case, we focus on the classification task. Bobek et al. [12] offer
recommendations to configure variability-aware business processes at design
time with Bayesian Networks. Clustering techniques have also been used [28,
87, 125] to perform classification tasks in an unsupervised way, i.e., without
knowing the classes to learn. Song et al. use dimensionality reduction techniques
to improve trace clustering [115]. In our context, we want to specify the variants
(i.e., the classes) to learn. Finally, Hinkka et al. [64] aim at categorising traces
into classes, thanks to LSTMs and GRUs. However, their approach differs on
several points: (i) they define artificial classes, and (ii) they focus on binary
classification.

8.3 Machine Learning for Variability-Intensive Systems

While there is a growing interest to employ ML techniques for VIS engineer-
ing [43, 102], to the best of our knowledge, classification of variants from
behavioural traces using ML techniques has not been studied yet. ML ap-
proaches have been used to support performance prediction (e.g., [3, 11, 55,71,
113,124,134]), performance optimisation (e.g., [39,88,127,131,132]), to improve
the search for good and acceptable configurations (e.g., [95, 122, 123]) or to
predict unwanted feature interactions [74,82]. If some of these works also target
classification tasks, they consider configurations as the main entry point of their
approaches and do not take into account the behaviour of the studied systems.
ML also supports usability prediction [129], attacks and vulnerabilities detec-
tion [1] and defect prediction [4,116]. In particular, Strüder et al. demonstrated
that artificial neural networks were suitable for this last task [116].

While ML can support VIS engineering, the converse, i.e., applying variability-
aware techniques to neural networks is also possible. For example, Ghofrani et
al. [52, 53] proposed a new approach to reuse modules of deep neural net-
works without additional training. On their side, Ghamizi et al. developed a
framework to explore variability amongst different neural network architectures
and automated search-based techniques to find the optimal one for a given
task [50,51].

VaryMinions 33

8.4 Variability-Intensive Systems Reverse Engineering

Over the years, several approaches were proposed to reverse engineer VISs,
and SPLs in particular. These techniques operate at different levels: variability
model, mapping between options and VIS artefacts, and learning VIS design
models.

8.4.1 Learning Variability models

More than a decade of effort has been devoted to extracting options from VIS
artefacts. Due to their popularity, most approaches target feature models [2,81,
86,89,112]. Besides, Ramos-Gutiérrez et al. [105] use process mining to retrieve
the process of configuring an SPL. VaryMinions does not necessarily need a
complete feature model but rather a set of variants. They can be sampled from
a feature model as we did for the Claroline system or simply known via product
descriptions.

8.4.2 Learning VIS Design Models

There also exist model-based approaches to recover an architectural model of a
VIS [8, 73,83]. This can be useful when the system was not designed with the
SPL paradigm in mind (but e.g., by using a clone-and-own approach) and when
we want to perform complex maintenance or evolution tasks. Devroey et al. [33]
designed a technique to retrieve a behavioural model of an SPL. This technique,
based on usage models inferred from logs, learns a candidate FTS which should
be completed manually with annotations (feature expressions). This technique
yielded the FTS model we used to generate Claroline datasets. On the other
hand, Damasceno et al. [26, 27] idea is fully automated, but limited to a
few variants. Their proposal consists of an adaptation of a classical learning
algorithm (L∗, by Angluin [5]) which is instrumented to merge individual
models of each variant into a model of the complete SPL. Note that merging
has a high complexity (i.e., exponential) with respect to the number of variants
to merge.

In contrast, VaryMinions does not aim to learn a behavioural model but
to build a mapping between behaviour and variants. It may prove useful to
automatically annotate SPL models.

8.4.3 Learning VIS Mappings

Feature location is another task in VIS reverse engineering that Cruz et al. [25]
divided into three categories of techniques: static (based on source code),
dynamic (based on execution traces), and textual (based on NLP). Some
techniques mix several approaches; for instance, Michelon et al. [91] use a
hybrid approach based both on static analysis of the source code and dynamic
analysis of execution traces. However, the general idea of feature location is
slightly different since these are white-box approaches whose purpose is to

34 Sophie Fortz et al.

map features with source code (e.g., by source code annotations). Their goal is
usually to help with maintenance and evolution. Moreover, classical feature
location techniques (e.g., [25, 91]) do not use RNNs. In our case, we are more
focused on associating behaviours with variants or directly with features (see
future work in Section 7.3). VaryMinions is thus a black-box and dynamic
approach that could be used to make a first classification of variants of interest
before delving into the source code or other white-box artifacts.

9 Conclusion

In this work, we evaluated the relevance of using Recurrent Neural Networks
(RNNs) to address the problem of how to multi-classify behavioural traces
found in logs to the variant(s) they belong. This mapping is highly relevant
when debugging variability-intensive systems (VIS) as anomalous behaviour
may result from the interaction of a few specific options belonging to some
variants amongst a myriad. Based on the promising results we obtained for
configurable business processes [46], we extended our experiments to Claroline,
a configurable course management system previously re-engineered at the
university of Namur. We assessed two popular RNN types – Long Short Term
Memory (LSTM) and Gated Recurrent Units (GRU) – under 20 distinct
parameterisations on 6 datasets (2 from configurable processes and 4 generated
from Claroline models). Our results show that it is always possible to learn a
mapping with an accuracy of at least 80% [47]. There is no prevalence of one
particular model type (GRU or LSTM) among the best-performing models.

While we demonstrated that VaryMinions easily scales up to at least 50
variants and 5, 000+ traces per variant, covering huge configuration spaces,
e.g., learning mapping for hundreds or thousands of configurations, may be
problematic. It suggests the first item for our future work: offer an option-
based encoding for the mapping problem, which would be less prone to variant
explosion. We also intend to experiment with other loss functions and design
new dedicated ones. Finally, new neural architectures may be considered, such
as attention-based ones [126].

Acknowledgements Computational resources have been provided by the Consortium des
Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique
de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. This
research is partly supported by the EOS VeriLearn project, under FRS-FNRS Grant No.
O05518F-RG03.

References

1. Abdelrazek, M., Grundy, J., Ibrahim, A.: Towards self-securing software systems:
Variability spectrum. In: Software Engineering for Variability Intensive Systems, pp.
119–130. Auerbach Publications (2019)

2. Acher, M., Baudry, B., Heymans, P., Cleve, A., Hainaut, J.L.: Support for reverse
engineering and maintaining feature models. In: S. Gnesi, P. Collet, K. Schmid (eds.)
VaMoS, p. 20. ACM (2013)

VaryMinions 35

3. Alves Pereira, J., Acher, M., Martin, H., Jézéquel, J.M.: Sampling effect on performance
prediction of configurable systems: A case study. In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pp. 277–288. ACM (2020). DOI
https://doi.org/10.1145/3358960.3379137

4. Amand, B., Cordy, M., Heymans, P., Acher, M., Temple, P., Jézéquel, J.M.: Towards
learning-aided configuration in 3d printing: Feasibility study and application to defect
prediction. In: Proceedings of the 13th International Workshop on Variability Modelling
of Software-Intensive Systems, pp. 1–9. ACM (2019). DOI https://doi.org/10.1145/
3302333.3302338

5. Angluin, D.: Learning regular sets from queries and counterexamples. Information and
computation 75(2), 87–106 (1987)

6. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines
- Concepts and Implementation. Springer (2013). DOI 10.1007/978-3-642-37521-7.
URL https://doi.org/10.1007/978-3-642-37521-7

7. Arganese, E., Fantechi, A., Gnesi, S., Semini, L.: Nuts and bolts of extracting variability
models from natural language requirements documents. In: Integrating Research
and Practice in Software Engineering, pp. 125–143. Springer (2020). DOI https:
//doi.org/10.1007/978-3-030-26574-8 10

8. Assunção, W.K., Vergilio, S.R., Lopez-Herrejon, R.E.: Automatic extraction of product
line architecture and feature models from uml class diagram variants. Information and
Software Technology 117, 106198 (2020)

9. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.:
Reengineering legacy applications into software product lines: a systematic mapping.
Empirical Software Engineering 22, 2972–3016 (2017)

10. Assy, N., Chan, N.N., Gaaloul, W.: An automated approach for assisting the design of
configurable process models. IEEE transactions on services computing 8(6), 874–888
(2015). DOI https://doi.org/10.1109/TSC.2015.2477815

11. Bacciu, D., Gnesi, S., Semini, L.: Using a machine learning approach to implement and
evaluate product line features. In: M.H. ter Beek, A. Lluch-Lafuente (eds.) Proceedings
11th International Workshop on Automated Specification and Verification of Web
Systems, WWV 2015, Oslo, Norway, 23rd June 2015, EPTCS, vol. 188, pp. 75–83.
EPTCS (2015). DOI 10.4204/EPTCS.188.8. URL https://doi.org/10.4204/EPTCS.

188.8

12. Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to
recommendations in business process modeling. In: AIBP at AI* IA, pp. 41–50. Springer
(2013)

13. Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based failure
prediction in distributed business processes. Information Systems 81, 220–235 (2019).
DOI https://doi.org/10.1016/j.is.2017.12.005. URL https://www.sciencedirect.com/

science/article/pii/S0306437917300030

14. Boussaa, M., Barais, O., Baudry, B., Sunyé, G.: Automatic non-functional testing of
code generators families. ACM SIGPLAN Notices 52(3), 202–212 (2016)

15. Bozorgi, Z.D., Teinemaa, I., Dumas, M., La Rosa, M., Polyvyanyy, A.: Process mining
meets causal machine learning: Discovering causal rules from event logs. In: 2020 2nd
International Conference on Process Mining (ICPM), pp. 129–136. IEEE (2020)

16. Bui, H.N., Vu, T.S., Nguyen, H.H., Nguyen, T.T., Ha, Q.T.: Exploiting cbow and lstm
models to generate trace representation for process mining. In: Asian Conference on
Intelligent Information and Database Systems, pp. 35–46. Springer (2020)

17. Bui, H.N., Vu, T.S., Nguyen, T.T., Nguyen, T.C., Ha, Q.T.: A compact trace repre-
sentation using deep neural networks for process mining. In: 2019 11th International
Conference on Knowledge and Systems Engineering (KSE), pp. 1–5. IEEE (2019)

18. Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.: Mining configurable process models
from collections of event logs. In: Business process management, pp. 33–48. Springer
(2013). DOI https://doi.org/10.1007/978-3-642-40176-3 5

19. Cândido, J., Aniche, M., van Deursen, A.: Log-based software monitoring: a systematic
mapping study. PeerJ Computer Science 7, e489 (2021)

20. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT press Cambridge
(2006)

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.4204/EPTCS.188.8
https://doi.org/10.4204/EPTCS.188.8
https://www.sciencedirect.com/science/article/pii/S0306437917300030
https://www.sciencedirect.com/science/article/pii/S0306437917300030

36 Sophie Fortz et al.

21. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational
Linguistics (2014). DOI https://doi.org/10.3115/v1/D14-1179

22. Chollet, F., et al.: Keras. https://keras.io (2015)

23. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent
neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning,
December 2014 (2014)

24. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: Foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Software Eng. 39(8), 1069–1089
(2013). DOI 10.1109/TSE.2012.86. URL https://doi.org/10.1109/TSE.2012.86

25. Cruz, D., Figueiredo, E., Martinez, J.: A literature review and comparison of three
feature location techniques using argouml-spl. In: Proceedings of the 13th International
Workshop on Variability Modelling of Software-Intensive Systems, pp. 1–10 (2019)

26. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning to reuse: Adaptive
model learning for evolving systems. In: International Conference on Integrated Formal
Methods, pp. 138–156. Springer (2019)

27. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning by sampling: learning
behavioral family models from software product lines. Empirical Software Engineering
26(1), 1–46 (2021)

28. De Weerdt, J., vanden Broucke, S.K., Vanthienen, J., Baesens, B.: Leveraging process
discovery with trace clustering and text mining for intelligent analysis of incident
management processes. In: IEEE Congress on Evolutionary Computation, pp. 1–8.
IEEE (2012). DOI https://doi.org/10.1109/CEC.2012.6256459

29. Developers, T.: Tensorflow (2021). DOI 10.5281/zenodo.4758419

30. Devroey, X.: VIBeS Case Studies: Featured Transition Systems and Feature Mod-
els (2020). DOI 10.5281/zenodo.4105900. URL https://doi.org/10.5281/zenodo.

4105900

31. Devroey, X.: VIBeS: Variability Intensive system Behavioral teSting framework (2022).
URL https://github.com/xdevroey/vibes

32. Devroey, X., Perrouin, G., Cordy, M., Samih, H., Legay, A., Schobbens, P., Heymans,
P.: Statistical prioritization for software product line testing: an experience report.
Softw. Syst. Model. 16(1), 153–171 (2017). DOI 10.1007/s10270-015-0479-8. URL
https://doi.org/10.1007/s10270-015-0479-8

33. Devroey, X., Perrouin, G., Cordy, M., Schobbens, P., Legay, A., Heymans, P.: Towards
statistical prioritization for software product lines testing. In: P. Collet, A. Wasowski,
T. Weyer (eds.) The Eighth International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’14, Sophia Antipolis, France, January 22-24, 2014, pp.
10:1–10:7. ACM (2014). DOI 10.1145/2556624.2556635. URL https://doi.org/10.

1145/2556624.2556635

34. Devroey, X., Perrouin, G., Legay, A., Schobbens, P., Heymans, P.: Covering SPL
behaviour with sampled configurations: An initial assessment. In: K. Schmid, Ø. Hau-
gen, J. Müller (eds.) Proceedings of the Ninth International Workshop on Vari-
ability Modelling of Software-intensive Systems, VaMoS ’15, Hildesheim, Germany,
January 21-23, 2015, p. 59. ACM (2015). DOI 10.1145/2701319.2701325. URL
https://doi.org/10.1145/2701319.2701325

35. Devroey, X., Perrouin, G., Legay, A., Schobbens, P.Y., Heymans, P.: Search-based
similarity-driven behavioural spl testing. In: Proceedings of the Tenth International
Workshop on Variability Modelling of Software-intensive Systems, pp. 89–96 (2016)

36. Di Mauro, N., Appice, A., Basile, T.M.: Activity prediction of business process instances
with inception cnn models. In: International conference of the italian association for
artificial intelligence, pp. 348–361. Springer (2019)

37. van Dongen, B.: Bpi challenge 2020 (2020). DOI 10.4121/uuid:
52fb97d4-4588-43c9-9d04-3604d4613b51. URL https://data.4tu.nl/collections/

BPI_Challenge_2020/5065541/1

https://keras.io
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.5281/zenodo.4105900
https://doi.org/10.5281/zenodo.4105900
https://github.com/xdevroey/vibes
https://doi.org/10.1007/s10270-015-0479-8
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.1145/2701319.2701325
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1

VaryMinions 37

38. van Dongen, B.B.: Bpi challenge 2015 (2015). DOI 10.4121/uuid:
31a308ef-c844-48da-948c-305d167a0ec1. URL https://data.4tu.nl/collections/

BPI_Challenge_2015/5065424/1
39. Dorn, J., Apel, S., Siegmund, N.: Generating attributed variability models for transfer

learning. In: Proceedings of the 14th International Working Conference on Variability
Modelling of Software-Intensive Systems, VAMOS ’20. ACM (2020). DOI 10.1145/
3377024.3377040. URL https://doi.org/10.1145/3377024.3377040

40. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning.
Decision Support Systems 100, 129–140 (2017). DOI https://doi.org/10.1016/j.dss.
2017.04.003

41. Fahland, D., van der Aalst, W.M.: Model repair — aligning process models to reality.
Information Systems 47, 220–243 (2015). DOI https://doi.org/10.1016/j.is.2013.12.007.
URL https://www.sciencedirect.com/science/article/pii/S0306437913001725

42. Fernandes, E.C., Fitzgerald, B., Brown, L., Borsato, M.: Machine learning and
process mining applied to process optimization: Bibliometric and systemic anal-
ysis. Procedia Manufacturing 38, 84–91 (2019). DOI https://doi.org/10.1016/j.
promfg.2020.01.012. URL https://www.sciencedirect.com/science/article/pii/

S2351978920300123. 29th International Conference on Flexible Automation and In-
telligent Manufacturing (FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond
Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufacturing

43. Ferreira, F., Silva, L.L., Valente, M.T.: Software engineering meets deep learning: a
mapping study. In: Proceedings of the 36th Annual ACM Symposium on Applied
Computing, pp. 1542–1549 (2021)

44. Fortz, S.: Lifts: Learning featured transition systems. In: Proceedings of the 25th ACM
International Systems and Software Product Line Conference - Volume B, SPLC ’21,
p. 1–6. Association for Computing Machinery, New York, NY, USA (2021). DOI
10.1145/3461002.3473066. URL https://doi.org/10.1145/3461002.3473066

45. Fortz, S.: Variability-aware Behavioural Learning. In: Proceedings of the 27th ACM
International Systems and Software Product Line Conference - Volume B, Tokyo,
Japan, SPLC ’23. Association for Computing Machinery, New York, NY, USA (2023).
DOI 10.1145/3579028.3609007. URL https://doi.org/10.1145/3579028.3609007

46. Fortz, S., Temple, P., Devroey, X., Heymans, P., Perrouin, G.: Varyminions: leveraging
rnns to identify variants in event logs. In: A. Ampatzoglou, D. Feitosa, G. Catolino,
V. Lenarduzzi (eds.) Proceedings of the 5th International Workshop on Machine
Learning Techniques for Software Quality Evolution, Athens, Greece, 23 August 2021,
pp. 13–18. ACM (2021). DOI 10.1145/3472674.3473980. URL https://doi.org/10.

1145/3472674.3473980
47. Fortz, S., Temple, P., Devroey, X., Heymans, P., Perrouin, G.: Varyminions (2022).

DOI 10.5281/zenodo.7492126. URL https://zenodo.org/record/7492126. Sophie
Fortz is supported by the FNRS via a FRIA grant. Gilles Perrouin is an FNRS Research
Associate.

48. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005
special session on real parameter optimization. Journal of Heuristics 15(6), 617–644
(2009)

49. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural computation 4(1), 1–58 (1992)

50. Ghamizi, S., Cordy, M., Papadakis, M., Traon, Y.L.: Automated search for configurations
of convolutional neural network architectures. In: Proceedings of the 23rd International
Systems and Software Product Line Conference-Volume A, pp. 119–130. ACM (2019).
DOI https://doi.org/10.1145/3336294.3336306

51. Ghamizi, S., Cordy, M., Papadakis, M., Traon, Y.L.: Featurenet: diversity-driven gener-
ation of deep learning models. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, pp. 41–44. ACM (2020).
DOI https://doi.org/10.1145/3377812.3382153

52. Ghofrani, J., Kozegar, E., Bozorgmehr, A., Soorati, M.D.: Reusability in artificial
neural networks: an empirical study. In: Proceedings of the 23rd International Systems
and Software Product Line Conference-Volume B, pp. 122–129. ACM (2019). DOI
https://doi.org/10.1145/3307630.3342419

https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1
https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1
https://doi.org/10.1145/3377024.3377040
https://www.sciencedirect.com/science/article/pii/S0306437913001725
https://www.sciencedirect.com/science/article/pii/S2351978920300123
https://www.sciencedirect.com/science/article/pii/S2351978920300123
https://doi.org/10.1145/3461002.3473066
https://doi.org/10.1145/3579028.3609007
https://doi.org/10.1145/3472674.3473980
https://doi.org/10.1145/3472674.3473980
https://zenodo.org/record/7492126

38 Sophie Fortz et al.

53. Ghofrani, J., Kozegar, E., Fehlhaber, A.L., Soorati, M.D.: Applying product line
engineering concepts to deep neural networks. In: Proceedings of the 23rd International
Systems and Software Product Line Conference-Volume A, pp. 72–77. ACM (2019).
DOI https://doi.org/10.1145/3336294.3336321

54. Golia, P., Soos, M., Chakraborty, S., Meel, K.S.: Designing samplers is easy: The
boon of testers. In: Formal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, October 19-22, 2021, pp. 222–230. IEEE (2021). DOI 10.
34727/2021/isbn.978-3-85448-046-4\ 31. URL https://doi.org/10.34727/2021/isbn.

978-3-85448-046-4_31

55. Ha, H., Zhang, H.: Deepperf: performance prediction for configurable software with
deep sparse neural network. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 1095–1106. IEEE (2019)

56. Hafemann Fragal, V., Simao, A., Mousavi, M.R.: Validated test models for software
product lines: Featured finite state machines. In: O. Kouchnarenko, R. Khosravi (eds.)
Formal Aspects of Component Software, pp. 210–227. Springer International Publishing,
Cham (2017)

57. Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry, B.: Test them
all, is it worth it? assessing configuration sampling on the jhipster web development
stack. Empir. Softw. Eng. 24(2), 674–717 (2019). DOI 10.1007/s10664-018-9635-4.
URL https://doi.org/10.1007/s10664-018-9635-4

58. Han, X., Hu, L., Mei, L., Dang, Y., Agarwal, S., Zhou, X., Hu, P.: A-bps: Auto-
matic business process discovery service using ordered neurons lstm. In: 2020 IEEE
International Conference on Web Services (ICWS), pp. 428–432. IEEE (2020)

59. Hanga, K.M., Kovalchuk, Y., Gaber, M.M.: A graph-based approach to interpreting
recurrent neural networks in process mining. IEEE Access 8, 172923–172938 (2020)

60. Harane, N., Rathi, S.: Comprehensive survey on deep learning approaches in predictive
business process monitoring. Modern Approaches in Machine Learning and Cognitive
Science: A Walkthrough pp. 115–128 (2020)

61. Hariyanti, E., Djunaidy, A., Siahaan, D.: Information security vulnerability prediction
based on business process model using machine learning approach. Computers &
Security 110, 102422 (2021). DOI https://doi.org/10.1016/j.cose.2021.102422. URL
https://www.sciencedirect.com/science/article/pii/S0167404821002467

62. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Traon, Y.L.: Bypassing
the combinatorial explosion: Using similarity to generate and prioritize t-wise test
configurations for software product lines. IEEE Trans. Software Eng. 40(7), 650–670
(2014). DOI 10.1109/TSE.2014.2327020. URL https://doi.org/10.1109/TSE.2014.

2327020

63. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: PLEDGE: a product
line editor and test generation tool. In: 17th International Software Product Line
Conference co-located workshops, SPLC 2013 workshops, Tokyo, Japan - August 26
- 30, 2013, pp. 126–129. ACM (2013). DOI 10.1145/2499777.2499778. URL https:

//doi.org/10.1145/2499777.2499778

64. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Classifying process instances using recur-
rent neural networks. In: International Conference on Business Process Management,
pp. 313–324. Springer (2018). DOI https://doi.org/10.1007/978-3-030-11641-5 25

65. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 6(02), 107–116 (1998). DOI https://doi.org/10.1142/S0218488598000094

66. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8),
1735–1780 (1997). DOI https://doi.org/10.1162/neco.1997.9.8.1735

67. Hui, L., Belkin, M.: Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks. In: The Ninth International Conference on Learning
Representations (ICLR 2021) (2021)

68. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised
learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5070–5079 (2019)

69. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et
des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_31
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_31
https://doi.org/10.1007/s10664-018-9635-4
https://www.sciencedirect.com/science/article/pii/S0167404821002467
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1145/2499777.2499778
https://doi.org/10.1145/2499777.2499778

VaryMinions 39

70. Japkowicz, N., Shah, M.: Evaluating learning algorithms: a classification perspective.
Cambridge University Press (2011)

71. Kaltenecker, C., Grebhahn, A., Siegmund, N., Apel, S.: The interplay of sampling and
machine learning for software performance prediction. IEEE Software 37(4), 58–66
(2020). DOI https://doi.org/10.1109/MS.2020.2987024

72. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon University, Software
Engineering Institute (1990)

73. Kerdoudi, M.L., Ziadi, T., Tibermacine, C., Sadou, S.: Recovering software architecture
product lines. In: 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 226–235. IEEE (2019)

74. Khoshmanesh, S., Lutz, R.: Does link prediction help find feature interactions in
software product lines? In: 2020 IEEE Seventh International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE), pp. 87–90. IEEE (2020)

75. Kowsari, K., Brown, D.E., Heidarysafa, M., Meimandi, K.J., Gerber, M.S., Barnes, L.E.:
Hdltex: Hierarchical deep learning for text classification. In: 16th IEEE international
conference on machine learning and applications (ICMLA), pp. 364–371. IEEE (2017).
DOI https://doi.org/10.1109/ICMLA.2017.0-134

76. Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business
process monitoring: a comparison of deep learning and classical approaches used for
outcome prediction. Business & Information Systems Engineering pp. 1–16 (2020)

77. La Rosa, M., Dumas, M.: Configurable process models: how to adopt standard practices
in your how way? BPTrends Newsletter (2008)

78. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In: Workshop on challenges in representation learning, ICML,
vol. 3, p. 896 (2013)

79. Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady, vol. 10, pp. 707–710. Soviet Union (1966)

80. Li, Y., Schulze, S., Saake, G.: Reverse engineering variability from natural language
documents: A systematic literature review. In: Proceedings of the 21st International
Systems and Software Product Line Conference-Volume A, pp. 133–142. ACM (2017).
DOI https://doi.org/10.1145/3106195.3106207

81. Li, Y., Schulze, S., Saake, G.: Reverse engineering variability from natural language
documents: A systematic literature review. In: SPLC’17 - Volume A, SPLC ’17, pp.
133–142. ACM, New York, NY, USA (2017). DOI 10.1145/3106195.3106207. URL
http://doi.acm.org/10.1145/3106195.3106207

82. Li, Y., Schulze, S., Xu, J.: Feature terms prediction: A feasible way to indicate the
notion of features in software product line. In: Proceedings of the Evaluation and
Assessment in Software Engineering, EASE ’20, p. 90–99. Association for Computing
Machinery, New York, NY, USA (2020). DOI 10.1145/3383219.3383229. URL https:

//doi.org/10.1145/3383219.3383229
83. Lima, C., Assunção, W.K., Martinez, J., Mendonça, W., Machado, I.C., Chavez, C.F.:

Product line architecture recovery with outlier filtering in software families: the apo-
games case study. Journal of the Brazilian Computer Society 25(1), 1–17 (2019)

84. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42(2), 318–327 (2020).
DOI https://doi.org/10.1109/TPAMI.2018.2858826

85. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. In: Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16, p. 2873–2879. AAAI Press (2016). DOI https:
//doi.org/10.5555/3060832.3061023

86. Lopez-Herrejon, R.E., Linsbauer, L., Egyed, A.: A systematic mapping study of search-
based software engineering for software product lines. Information and Software
Technology 61, 33 – 51 (2015). DOI http://dx.doi.org/10.1016/j.infsof.2015.01.008.
URL //www.sciencedirect.com/science/article/pii/S0950584915000166

87. Mans, R.S., Schonenberg, M., Song, M., van der Aalst, W.M., Bakker, P.J.: Application
of process mining in healthcare–a case study in a dutch hospital. In: International joint
conference on biomedical engineering systems and technologies, pp. 425–438. Springer
(2008). DOI https://doi.org/10.1007/978-3-540-92219-3 32

http://doi.acm.org/10.1145/3106195.3106207
https://doi.org/10.1145/3383219.3383229
https://doi.org/10.1145/3383219.3383229
//www.sciencedirect.com/science/article/pii/S0950584915000166

40 Sophie Fortz et al.

88. Martin, H., Acher, M., Pereira, J.A., Jézéquel, J.M.: A comparison of performance
specialization learning for configurable systems. In: Proceedings of the 25th ACM
International Systems and Software Product Line Conference-Volume A, pp. 46–57
(2021)

89. Martinez, J., Parsai, A.: D3.1: Identification of relevant state of the art. Tech. rep.,
ITEA 3 ReVAMP2 Project Consortium (2018)

90. Matzner, M., Eskofier, B.: Time matters: Time-aware lstms for predictive business
process monitoring. In: Process Mining Workshops: ICPM 2020 International Workshops,
Padua, Italy, October 5–8, 2020, Revised Selected Papers, vol. 406, p. 112. Springer
Nature (2021)

91. Michelon, G.K., Linsbauer, L., Assunção, W.K., Fischer, S., Egyed, A.: A hybrid feature
location technique for re-engineeringsingle systems into software product lines. In:
15th International Working Conference on Variability Modelling of Software-Intensive
Systems, pp. 1–9 (2021)

92. Michelon, G.K., Martinez, J., Sotto-Mayor, B., Arrieta, A., Assunção, W.K., Abreu, R.,
Egyed, A.: Spectrum-based feature localization for families of systems. Journal of Sys-
tems and Software 195, 111532 (2023). DOI https://doi.org/10.1016/j.jss.2022.111532.
URL https://www.sciencedirect.com/science/article/pii/S0164121222002084

93. Mortara, J., Collet, P.: Capturing the Diversity of Analyses on the Linux Kernel
Variability, p. 160–171. Association for Computing Machinery, New York, NY, USA
(2021). URL https://doi.org/10.1145/3461001.3471151

94. Nagarajah, T., Poravi, G.: A review on automated machine learning (automl) systems.
In: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp.
1–6. IEEE (2019)

95. Nair, V., Menzies, T., Siegmund, N., Apel, S.: Using bad learners to find good config-
urations. In: E. Bodden, W. Schäfer, A. van Deursen, A. Zisman (eds.) Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pp. 257–267. ACM (2017). DOI
10.1145/3106237.3106238. URL https://doi.org/10.1145/3106237.3106238

96. Nemenyi, P.B.: Distribution-free multiple comparisons. Princeton University (1963)
97. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art

deep learning methods for process prediction. Artificial Intelligence Review pp. 1–27
(2021)

98. Nguyen, H.T.C., Lee, S., Kim, J., Ko, J., Comuzzi, M.: Autoencoders for improving
quality of process event logs. Expert Systems with Applications 131, 132–147 (2019).
DOI https://doi.org/10.1016/j.eswa.2019.04.052

99. Nolle, T., Seeliger, A., Mühlhäuser, M.: Binet: multivariate business process anomaly
detection using deep learning. In: International Conference on Business Process Manage-
ment, pp. 271–287. Springer (2018). DOI https://doi.org/10.1007/978-3-319-98648-7 16

100. Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: Deepalign: Alignment-based process
anomaly correction using recurrent neural networks. In: International Conference on
Advanced Information Systems Engineering, pp. 319–333. Springer (2020). DOI
https://doi.org/10.1007/978-3-030-49435-3 20

101. Park, G., Song, M.: Predicting performances in business processes using deep neural
networks. Decision Support Systems 129, 113191 (2020)

102. Pereira, J.A., Martin, H., Temple, P., Acher, M.: Machine learning and configurable
systems: A gentle introduction. In: Proceedings of the 24th ACM Conference on Systems
and Software Product Line: Volume A, SPLC ’20. ACM (2020). DOI https://doi.org/
10.1145/3382025.3414976. URL https://doi.org/10.1145/3382025.3414976

103. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer-Verlag (2005)

104. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foundations,
principles, and techniques. Springer (2005)

105. Ramos-Gutiérrez, B., Varela-Vaca, Á.J., Galindo, J.A., Gómez-López, M.T., Bena-
vides, D.: Discovering configuration workflows from existing logs using process mining.
Empirical Software Engineering 26(1), 1–41 (2021)

106. Rosa, M.L., Aalst, W.M.V.D., Dumas, M., Milani, F.P.: Business process variability
modeling: A survey. ACM Computing Surveys 50(1), 1–45 (2017). DOI https://doi.
org/10.1145/3041957

https://www.sciencedirect.com/science/article/pii/S0164121222002084
https://doi.org/10.1145/3461001.3471151
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3382025.3414976

VaryMinions 41

107. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature 323(6088), 533–536 (1986)

108. Sánchez, A.B., Segura, S., Parejo, J.A., Cortés, A.R.: Variability testing in the wild:
the drupal case study. Softw. Syst. Model. 16(1), 173–194 (2017). DOI 10.1007/
s10270-015-0459-z. URL https://doi.org/10.1007/s10270-015-0459-z

109. Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic semantics of feature
diagrams. Comput. Networks 51(2), 456–479 (2007). DOI 10.1016/j.comnet.2006.08.008.
URL https://doi.org/10.1016/j.comnet.2006.08.008

110. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing 45(11), 2673–2681 (1997). DOI https://doi.org/10.1109/78.650093

111. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model of
the linux kernel. VaMoS 10(10), 45–51 (2010)

112. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering feature
models. In: Proceedings of the 33rd International Conference on Software Engineering,
pp. 461–470. ACM (2011)

113. Shu, Y., Sui, Y., Zhang, H., Xu, G.: Perf-al: Performance prediction for configurable
software through adversarial learning. In: Proceedings of the 14th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM), pp.
1–11 (2020)

114. Sikal, R., Sbai, H., Kjiri, L.: Configurable process mining: variability discovery approach.
In: IEEE 5th International Congress on Information Science and Technology (CiSt),
pp. 137–142. IEEE (2018). DOI https://doi.org/10.1109/CIST.2018.8596526

115. Song, M., Yang, H., Siadat, S.H., Pechenizkiy, M.: A comparative study of dimensionality
reduction techniques to enhance trace clustering performances. Expert Systems with
Applications 40(9), 3722 – 3737 (2013). DOI https://doi.org/10.1016/j.eswa.2012.12.078.
URL http://www.sciencedirect.com/science/article/pii/S095741741201319X

116. Strüder, S., Mukelabai, M., Strüber, D., Berger, T.: Feature-oriented defect prediction.
In: Proceedings of the 24th ACM Conference on Systems and Software Product Line:
Volume A, pp. 1–12. ACM (2020). DOI https://doi.org/10.1145/3382025.3414960

117. Sun, X., Hou, W., Ying, Y., Yu, D.: Remaining time prediction of business processes
based on multilayer machine learning. In: 2020 IEEE International Conference on Web
Services (ICWS), pp. 554–558. IEEE (2020)

118. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring
with lstm neural networks. In: Advanced Information Systems Engineering, pp. 477–492.
Springer (2017). DOI https://doi.org/10.1007/978-3-319-59536-8 30

119. Taymouri, F., Rosa, M.L., Dumas, M., Maggi, F.M.: Business process variant analysis:
Survey and classification. Knowledge-Based Systems 211, 106557 (2021). DOI
https://doi.org/10.1016/j.knosys.2020.106557. URL https://www.sciencedirect.com/

science/article/pii/S0950705120306869
120. Tello-Leal, E., Roa, J., Rubiolo, M., Ramirez-Alcocer, U.M.: Predicting activities in

business processes with lstm recurrent neural networks. In: 2018 ITU Kaleidoscope:
Machine Learning for a 5G Future (ITU K), pp. 1–7. IEEE (2018)

121. Temple, P., Acher, M., Jézéquel, J.M.: Empirical assessment of multimorphic testing.
IEEE Transactions on Software Engineering 47(7), 1511–1527 (2021). DOI 10.1109/
TSE.2019.2926971

122. Temple, P., Galindo, J.A., Acher, M., Jézéquel, J.: Using machine learning to infer
constraints for product lines. In: H. Mei (ed.) Proceedings of the 20th International
Systems and Software Product Line Conference, SPLC 2016, Beijing, China, September
16-23, 2016, pp. 209–218. ACM (2016). DOI 10.1145/2934466.2934472. URL https:

//doi.org/10.1145/2934466.2934472
123. Temple, P., Perrouin, G., Acher, M., Biggio, B., Jézéquel, J.M., Roli, F.: Empirical

assessment of generating adversarial configurations for software product lines. Empirical
Software Engineering 26(1), 1–49 (2021)

124. Valov, P., Guo, J., Czarnecki, K.: Empirical comparison of regression methods for
variability-aware performance prediction. In: Proceedings of the 19th International
Conference on Software Product Line, pp. 186–190 (2015)

125. Varela-Vaca, Á.J., Galindo, J.A., Ramos-Gutiérrez, B., Gómez-López, M.T., Bena-
vides, D.: Process mining to unleash variability management: discovering configura-
tion workflows using logs. In: Proceedings of the 23rd International Systems and

https://doi.org/10.1007/s10270-015-0459-z
https://doi.org/10.1016/j.comnet.2006.08.008
http://www.sciencedirect.com/science/article/pii/S095741741201319X
https://www.sciencedirect.com/science/article/pii/S0950705120306869
https://www.sciencedirect.com/science/article/pii/S0950705120306869
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1145/2934466.2934472

42 Sophie Fortz et al.

Software Product Line Conference-Volume A, pp. 265–276. ACM (2019). DOI
https://doi.org/10.1145/3336294.3336303

126. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. In: Advances in neural information processing
systems, pp. 5998–6008 (2017)

127. Velez, M., Jamshidi, P., Siegmund, N., Apel, S., Kästner, C.: White-box analysis over
machine learning: Modeling performance of configurable systems. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 1072–1084. IEEE
(2021)

128. Venugopal, I., Töllich, J., Fairbank, M., Scherp, A.: A comparison of deep-learning meth-
ods for analysing and predicting business processes. arXiv preprint arXiv:2102.07838
(2021)

129. Vyas, G., Vyas, S., Paul, P.K., Sharma, A., Bhardwaj, C.: Prediction algorithms and
consecutive estimation of software product line feature model usability. In: 2019 Amity
International Conference on Artificial Intelligence (AICAI), pp. 774–777. IEEE (2019)

130. Wang, J., Yu, D., Liu, C., Sun, X.: Outcome-oriented predictive process monitoring
with attention-based bidirectional lstm neural networks. In: 2019 IEEE International
Conference on Web Services (ICWS), pp. 360–367. IEEE (2019)

131. Weber, M., Apel, S., Siegmund, N.: White-box performance-influence models: A profiling
and learning approach. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 1059–1071. IEEE (2021)

132. Weckesser, M., Kluge, R., Pfannemüller, M., Matthé, M., Schürr, A., Becker, C.:
Optimal reconfiguration of dynamic software product lines based on performance-
influence models. In: Proceedings of the 22nd International Systems and Software
Product Line Conference-Volume 1, pp. 98–109 (2018)

133. Welsing, M., Maetschke, J., Thomas, K., Gützlaff, A., Schuh, G., Meusert, S.: Combining
process mining and machine learning for lead time prediction in high variance processes.
In: B.A. Behrens, A. Brosius, W. Hintze, S. Ihlenfeldt, J.P. Wulfsberg (eds.) Production
at the leading edge of technology, pp. 528–537. Springer Berlin Heidelberg, Berlin,
Heidelberg (2021)

134. Zhang, Y., Guo, J., Blais, E., Czarnecki, K.: Performance prediction of configurable
software systems by fourier learning (t). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 365–373. IEEE (2015)

A Appendix 1

This appendix contains 6 tables (one per datasets) representing the average and standard
deviation for four metrics computed on 10 iterations. Accuracy, precision, recall and F1-score
were computed based on definitions provided in Section 5.5.

The first three columns of the tables show the hyperparameters values for each of the
RNNs’ parameterisations. For conciseness, we do not report in these tables hyperparameters
that were fixed to a single value, such as the batch size or the number of epochs. Indeed, we
discussed them in Section 5. The other columns reports the average and standard deviation
of accuracy, precision, recall and F1-score.

VaryMinions 43
T
ab

le
4:

R
es
u
lt
s
fo
r
d
at
as
et

B
P
IC

15
:
A
ve
ra
ge
d
an

d
st
an

d
ar
d
d
ev
ia
ti
on

s
of

d
iff
er
en
t
m
et
ri
cs

ov
er

10
ru
n
s.

E
ac
h
li
n
e
co
rr
es
p
on

d
s

to
a
p
ar
am

et
er
is
at
io
n
of

a
R
N
N
.

D
a
ta

se
t

M
o
d
e
l

L
o
ss

A
c
ti
v
a
ti
o
n

A
c
c
u
r
a
c
y

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
S
c
o
r
e

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

B
P

IC
1
5

L
S

T
M

m
se

ta
n

h
0
.8

8
4
8

0
.0

0
7
4

0
.8

8
5
4

0
.0

0
7
4

0
.8

8
4
8

0
.0

0
7
4

0
.8

8
4
5

0
.0

0
7
8

B
P

IC
1
5

L
S

T
M

b
in

ce
si

g
m

o
id

0
.8

8
0
6

0
.0

0
6
2

0
.8

8
1
8

0
.0

0
6

0
.8

8
0
6

0
.0

0
6
2

0
.8

8
0
4

0
.0

0
6
4

B
P

IC
1
5

L
S

T
M

m
se

si
g
m

o
id

0
.8

7
8
3

0
.0

0
6
9

0
.8

7
9
6

0
.0

0
6
4

0
.8

7
8
3

0
.0

0
6
9

0
.8

7
8
2

0
.0

0
6
8

B
P

IC
1
5

G
R

U
m

se
ta

n
h

0
.8

7
4
1

0
.0

0
7

0
.8

7
4
7

0
.0

0
7
1

0
.8

7
4
1

0
.0

0
7

0
.8

7
3
3

0
.0

0
7
5

B
P

IC
1
5

G
R

U
b

in
ce

-l
o
g
it

s
si

g
m

o
id

0
.8

7
3
3

0
.0

0
9
7

0
.8

7
3
8

0
.0

1
0
3

0
.8

7
3
3

0
.0

0
9
7

0
.8

7
2
8

0
.0

1
0
1

B
P

IC
1
5

G
R

U
b

in
ce

si
g
m

o
id

0
.8

6
7
7

0
.0

1
2
6

0
.8

6
8
3

0
.0

1
1
7

0
.8

6
7
7

0
.0

1
2
6

0
.8

6
7
2

0
.0

1
2
5

B
P

IC
1
5

G
R

U
m

se
si

g
m

o
id

0
.8

6
2
3

0
.0

0
7
7

0
.8

6
3

0
.0

0
8
1

0
.8

6
2
3

0
.0

0
7
7

0
.8

6
1
9

0
.0

0
7
9

B
P

IC
1
5

L
S

T
M

b
in

ce
-l

o
g
it

s
si

g
m

o
id

0
.8

5
7
1

0
.0

0
9
5

0
.8

5
9
7

0
.0

0
9
5

0
.8

5
7
1

0
.0

0
9
5

0
.8

5
6
6

0
.0

0
9
9

B
P

IC
1
5

L
S

T
M

m
a
n

h
a
tt

a
n

ta
n

h
0
.8

2
5
7

0
.0

1
4
5

0
.8

3
1
1

0
.0

1
5
5

0
.8

2
5
7

0
.0

1
4
5

0
.8

2
2
8

0
.0

1
4
7

B
P

IC
1
5

G
R

U
b

in
ce

-l
o
g
it

s
ta

n
h

0
.7

9
3
7

0
.0

5
9
6

0
.7

5
0
2

0
.1

1
4
3

0
.7

9
3
7

0
.0

5
9
6

0
.7

6
7
6

0
.0

9
0
2

B
P

IC
1
5

G
R

U
b

in
ce

ta
n

h
0
.7

8
9
8

0
.0

2
1

0
.7

8
8
9

0
.0

2
0
6

0
.7

8
9
8

0
.0

2
1

0
.7

8
4
1

0
.0

2
2
4

B
P

IC
1
5

G
R

U
m

a
n

h
a
tt

a
n

ta
n

h
0
.7

8
5
8

0
.0

0
9
2

0
.7

8
9
6

0
.0

1
0
9

0
.7

8
5
8

0
.0

0
9
2

0
.7

7
3
9

0
.0

1
0
5

B
P

IC
1
5

L
S

T
M

ja
cc

a
rd

si
g
m

o
id

0
.7

8
5
8

0
.0

4
4
7

0
.8

0
7
2

0
.0

5
8
1

0
.7

8
5
8

0
.0

4
4
7

0
.7

5
4
1

0
.0

6
6
6

B
P

IC
1
5

L
S

T
M

b
in

ce
ta

n
h

0
.7

7
2
4

0
.0

7
7
8

0
.7

8
6
4

0
.0

6
2
5

0
.7

7
2
4

0
.0

7
7
8

0
.7

6
6
6

0
.0

8
3
9

B
P

IC
1
5

L
S

T
M

b
in

ce
-l

o
g
it

s
ta

n
h

0
.7

4
3
6

0
.1

1
6
5

0
.7

1
2
9

0
.1

5
8
5

0
.7

4
3
6

0
.1

1
6
5

0
.6

9
4
4

0
.1

6
0
4

B
P

IC
1
5

G
R

U
ja

cc
a
rd

si
g
m

o
id

0
.6

9
6
2

0
.0

5
8
3

0
.7

0
6

0
.0

6
9
6

0
.6

9
6
2

0
.0

5
8
3

0
.6

5
6
6

0
.0

8
6
1

B
P

IC
1
5

L
S

T
M

ja
cc

a
rd

ta
n

h
0
.6

0
9
8

0
.0

4
3
8

0
.5

8
8

0
.0

2
7
6

0
.6

0
9
8

0
.0

4
3
8

0
.5

4
1
6

0
.0

5
6
5

B
P

IC
1
5

G
R

U
ja

cc
a
rd

ta
n

h
0
.5

5
2
9

0
.0

2
4
4

0
.5

8
3
2

0
.0

5
1
1

0
.5

5
2
9

0
.0

2
4
4

0
.4

8
4
7

0
.0

4
2

B
P

IC
1
5

G
R

U
m

a
n

h
a
tt

a
n

si
g
m

o
id

0
.2

5
3
8

0
.0

5
8
5

0
.1

2
2
3

0
.0

9
1
2

0
.2

5
3
8

0
.0

5
8
5

0
.1

1
9
4

0
.0

6
2
7

B
P

IC
1
5

L
S

T
M

m
a
n

h
a
tt

a
n

si
g
m

o
id

0
.2

3
1
3

0
.0

5
5
2

0
.0

8
9
3

0
.0

7
7
6

0
.2

3
1
3

0
.0

5
5
2

0
.0

9
2
6

0
.0

5
0
5

44 Sophie Fortz et al.
T
ab

le
5:

R
es
u
lt
s
fo
r
d
at
as
et

B
P
IC

20
:
A
ve
ra
ge
d
an

d
st
an

d
ar
d
d
ev
ia
ti
on

s
of

d
iff
er
en
t
m
et
ri
cs

ov
er

10
ru
n
s.

E
ac
h
li
n
e
co
rr
es
p
on

d
s

to
a
p
ar
am

et
er
is
at
io
n
of

a
R
N
N
.

D
a
ta

se
t

M
o
d
e
l

L
o
ss

A
c
ti
v
a
ti
o
n

A
c
c
u
r
a
c
y

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
S
c
o
r
e

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

B
P

IC
2
0

L
S

T
M

m
se

si
g
m

o
id

0
.8

7
4
4

0
.0

3
9
7

0
.8

8
7
6

0
.0

2
7
9

0
.8

7
4
4

0
.0

3
9
7

0
.8

7
1
6

0
.0

4
2
4

B
P

IC
2
0

L
S

T
M

m
se

ta
n

h
0
.8

5
8
5

0
.0

3
7
5

0
.8

7
6
4

0
.0

2
6
1

0
.8

5
8
5

0
.0

3
7
5

0
.8

5
3
9

0
.0

4
1
6

B
P

IC
2
0

L
S

T
M

b
in

ce
-l

o
g
it

s
si

g
m

o
id

0
.8

5
4
1

0
.0

7
1
4

0
.8

7
3
6

0
.0

4
9
9

0
.8

5
4
1

0
.0

7
1
4

0
.8

4
2
5

0
.0

8
5
2

B
P

IC
2
0

L
S

T
M

b
in

ce
si

g
m

o
id

0
.8

3
9
7

0
.0

6
4
2

0
.8

5
9
8

0
.0

4
8
5

0
.8

3
9
7

0
.0

6
4
2

0
.8

3
0
8

0
.0

7
4
4

B
P

IC
2
0

G
R

U
m

se
si

g
m

o
id

0
.8

2
5
8

0
.0

8
9
7

0
.8

2
9

0
.0

9
9
7

0
.8

2
5
8

0
.0

8
9
7

0
.8

1
4
8

0
.1

0
8
6

B
P

IC
2
0

G
R

U
m

se
ta

n
h

0
.8

1
9
8

0
.0

4
8
9

0
.8

5
0
8

0
.0

2
8
7

0
.8

1
9
8

0
.0

4
8
9

0
.8

0
9
4

0
.0

5
7
4

B
P

IC
2
0

G
R

U
b

in
ce

-l
o
g
it

s
si

g
m

o
id

0
.7

8
9
5

0
.0

6
1
7

0
.8

2
2
9

0
.0

4
9
9

0
.7

8
9
5

0
.0

6
1
7

0
.7

7
2
2

0
.0

7
2
8

B
P

IC
2
0

G
R

U
b

in
ce

si
g
m

o
id

0
.7

7
5
8

0
.0

4
2
8

0
.8

1
0
.0

3
3
8

0
.7

7
5
8

0
.0

4
2
8

0
.7

5
8

0
.0

5
4

B
P

IC
2
0

L
S

T
M

b
in

ce
-l

o
g
it

s
ta

n
h

0
.7

5
6
9

0
.0

7
2

0
.7

7
9
7

0
.0

8
0
6

0
.7

5
6
9

0
.0

7
2

0
.7

2
8
4

0
.0

9
2
4

B
P

IC
2
0

G
R

U
b

in
ce

-l
o
g
it

s
ta

n
h

0
.7

3
0
3

0
.1

0
0
3

0
.7

8
2
8

0
.0

7
1
4

0
.7

3
0
3

0
.1

0
0
3

0
.6

8
5
2

0
.1

4
2
2

B
P

IC
2
0

L
S

T
M

b
in

ce
ta

n
h

0
.6

4
6
9

0
.1

2
6

0
.6

2
7
6

0
.2

1
9
9

0
.6

4
6
9

0
.1

2
6

0
.5

6
9
5

0
.1

8
7
6

B
P

IC
2
0

G
R

U
b

in
ce

ta
n

h
0
.5

9
1
8

0
.0

4
1

0
.5

9
6
6

0
.2

0
5

0
.5

9
1
8

0
.0

4
1

0
.4

7
8

0
.0

6
4
2

B
P

IC
2
0

L
S

T
M

m
a
n

h
a
tt

a
n

ta
n

h
0
.5

8
7
8

0
.0

3
3
2

0
.5

1
7
3

0
.1

2
7
5

0
.5

8
7
8

0
.0

3
3
2

0
.4

7
0
7

0
.0

4
5
9

B
P

IC
2
0

G
R

U
m

a
n

h
a
tt

a
n

ta
n

h
0
.5

8
2
6

0
.0

4
5
8

0
.6

8
5
8

0
.0

6
5
3

0
.5

8
2
6

0
.0

4
5
8

0
.4

5
0
6

0
.0

6
2
9

B
P

IC
2
0

G
R

U
ja

cc
a
rd

si
g
m

o
id

0
.5

4
4
9

0
.0

1
3
9

0
.3

0
7
5

0
.0

1
7
6

0
.5

4
4
9

0
.0

1
3
9

0
.3

8
9
8

0
.0

1
6
5

B
P

IC
2
0

L
S

T
M

ja
cc

a
rd

ta
n

h
0
.4

6
6
1

0
.0

2
3
6

0
.2

3
2
1

0
.0

4
3
5

0
.4

6
6
1

0
.0

2
3
6

0
.2

9
9
5

0
.0

2
7
8

B
P

IC
2
0

L
S

T
M

m
a
n

h
a
tt

a
n

si
g
m

o
id

0
.4

6
2
9

0
.0

1
1
5

0
.2

1
4
4

0
.0

1
0
7

0
.4

6
2
9

0
.0

1
1
5

0
.2

9
3

0
.0

1
2
3

B
P

IC
2
0

G
R

U
ja

cc
a
rd

ta
n

h
0
.4

6
0
2

0
.0

2
2
9

0
.2

3
6
2

0
.0

3
6
7

0
.4

6
0
2

0
.0

2
2
9

0
.2

9
3
3

0
.0

2
4
2

B
P

IC
2
0

G
R

U
m

a
n

h
a
tt

a
n

si
g
m

o
id

0
.4

5
8
4

0
.0

2
1
7

0
.2

1
0
5

0
.0

2
0
.4

5
8
4

0
.0

2
1
7

0
.2

8
8
4

0
.0

2
3

B
P

IC
2
0

L
S

T
M

ja
cc

a
rd

si
g
m

o
id

0
.4

5
7
6

0
.0

1
4
4

0
.2

0
9
6

0
.0

1
3
2

0
.4

5
7
6

0
.0

1
4
4

0
.2

8
7
5

0
.0

1
5
2

VaryMinions 45
T
a
b
le

6
:
R
es
u
lt
s
fo
r
d
a
ta
se
t
C
la
ro
li
n
e
D
is
si
m
il
a
r
1
0
:
A
v
er
a
g
ed

a
n
d
st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
d
iff
er
en
t
m
et
ri
cs

ov
er

1
0
ru
n
s.

E
a
ch

li
n
e
co
rr
es
p
on

d
s
to

a
p
ar
am

et
er
is
a
ti
o
n
o
f
a
R
N
N
.

D
a
ta

se
t

M
o
d
e
l

L
o
ss

A
c
ti
v
a
ti
o
n

A
c
c
u
r
a
c
y

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
S
c
o
r
e

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
b

in
ce

si
g
m

o
id

0
.9

9
6
8

0
.0

0
0
6

0
.9

9
6
8

0
.0

0
0
6

0
.9

9
6
8

0
.0

0
0
6

0
.9

9
6
8

0
.0

0
0
6

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
b

in
ce

-l
o
g
it

s
si

g
m

o
id

0
.9

9
6
4

0
.0

0
0
3

0
.9

9
6
5

0
.0

0
0
3

0
.9

9
6
4

0
.0

0
0
3

0
.9

9
6
4

0
.0

0
0
3

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
m

se
si

g
m

o
id

0
.9

0
6
4

0
.1

8
6
8

0
.8

8
4
2

0
.2

1
1
1

0
.9

0
6
4

0
.1

8
6
8

0
.8

9
0
5

0
.2

0
5
9

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

m
se

ta
n

h
0
.8

5
3
6

0
.2

5
3
2

0
.8

1
8
1

0
.3

0
7
7

0
.8

5
3
6

0
.2

5
3
2

0
.8

2
4
5

0
.2

9
7
7

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

m
se

si
g
m

o
id

0
.7

4
5
8

0
.2

5
5
4

0
.6

7
2
6

0
.3

1
0
2

0
.7

4
5
8

0
.2

5
5
4

0
.6

9
1
3

0
.2

9
8
6

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

b
in

ce
-l

o
g
it

s
si

g
m

o
id

0
.6

8
8
5

0
.2

1
7

0
.6

0
0
7

0
.2

6
0
5

0
.6

8
8
5

0
.2

1
7

0
.6

1
4
7

0
.2

5
3
1

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

b
in

ce
si

g
m

o
id

0
.6

8
7
1

0
.3

1
3
8

0
.6

2
1
3

0
.3

6
2
7

0
.6

8
7
1

0
.3

1
3
8

0
.6

2
5
8

0
.3

6
2

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

b
in

ce
ta

n
h

0
.3

5
9
2

0
.2

7
3
4

0
.2

3
8
8

0
.2

7
0
.3

5
9
2

0
.2

7
3
4

0
.2

6
3
6

0
.2

7
7
2

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

m
a
n

h
a
tt

a
n

ta
n

h
0
.2

6
8
7

0
.0

7
8
5

0
.1

6
8
6

0
.0

5
8
3

0
.2

6
8
7

0
.0

7
8
5

0
.1

7
6
7

0
.0

7
3
2

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
b

in
ce

ta
n

h
0
.2

5
9
9

0
.3

3
9
2

0
.1

7
7
4

0
.3

5
9
7

0
.2

5
9
9

0
.3

3
9
2

0
.1

8
7
5

0
.3

6
1
9

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
ja

cc
a
rd

ta
n

h
0
.1

9
9
8

0
.1

0
4
3

0
.0

5
9
5

0
.0

6
4
4

0
.1

9
9
8

0
.1

0
4
3

0
.0

8
4
3

0
.0

7
9

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

ja
cc

a
rd

ta
n

h
0
.1

7
9
6

0
.0

7
8
6

0
.0

5
5
2

0
.0

5
6
4

0
.1

7
9
6

0
.0

7
8
6

0
.0

7
2
8

0
.0

6
4
3

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
m

a
n

h
a
tt

a
n

si
g
m

o
id

0
.1

0
1
2

0
.0

0
1
5

0
.0

1
0
3

0
.0

0
0
3

0
.1

0
1
2

0
.0

0
1
5

0
.0

1
8
6

0
.0

0
0
5

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
b

in
ce

-l
o
g
it

s
ta

n
h

0
.1

0
0
6

0
.0

0
1
2

0
.0

1
0
1

0
.0

0
0
2

0
.1

0
0
6

0
.0

0
1
2

0
.0

1
8
4

0
.0

0
0
4

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
m

se
ta

n
h

0
.0

9
9
8

0
.0

0
1
7

0
.0

1
0
.0

0
0
3

0
.0

9
9
8

0
.0

0
1
7

0
.0

1
8
1

0
.0

0
0
6

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

b
in

ce
-l

o
g
it

s
ta

n
h

0
.0

9
9
7

0
.0

0
1
9

0
.0

1
1
6

0
.0

0
5

0
.0

9
9
7

0
.0

0
1
9

0
.0

1
8
1

0
.0

0
0
7

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

m
a
n

h
a
tt

a
n

si
g
m

o
id

0
.0

9
9
6

0
.0

0
1
6

0
.0

0
9
9

0
.0

0
0
3

0
.0

9
9
6

0
.0

0
1
6

0
.0

1
8

0
.0

0
0
6

cl
a
ro

li
n

e-
d

is
1
0

L
S

T
M

ja
cc

a
rd

si
g
m

o
id

0
.0

9
9
5

0
.0

0
1
6

0
.0

0
9
9

0
.0

0
0
3

0
.0

9
9
5

0
.0

0
1
6

0
.0

1
8

0
.0

0
0
6

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
m

a
n

h
a
tt

a
n

ta
n

h
0
.0

9
9
1

0
.0

0
2
2

0
.0

0
9
8

0
.0

0
0
4

0
.0

9
9
1

0
.0

0
2
2

0
.0

1
7
9

0
.0

0
0
7

cl
a
ro

li
n

e-
d

is
1
0

G
R

U
ja

cc
a
rd

si
g
m

o
id

0
.0

9
8
9

0
.0

0
2
2

0
.0

0
9
8

0
.0

0
0
4

0
.0

9
8
9

0
.0

0
2
2

0
.0

1
7
8

0
.0

0
0
8

46 Sophie Fortz et al.
T
ab

le
7:

R
es
u
lt
s
fo
r
d
at
as
et

C
la
ro
li
n
e
R
an

d
om

10
:
A
ve
ra
ge
d
an

d
st
an

d
ar
d
d
ev
ia
ti
on

s
of

d
iff
er
en
t
m
et
ri
cs

ov
er

10
ru
n
s.

E
ac
h
li
n
e

co
rr
es
p
on

d
s
to

a
p
ar
am

et
er
is
a
ti
o
n
o
f
a
R
N
N
.

D
a
ta

se
t

M
o
d
e
l

L
o
ss

A
c
ti
v
a
ti
o
n

A
c
c
u
r
a
c
y

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
S
c
o
r
e

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
b

in
ce

si
g
m

o
id

0
.9

8
6
1

0
.0

3
2
1

0
.9

8
1
1

0
.0

4
8
2

0
.9

8
6
1

0
.0

3
2
1

0
.9

8
2
8

0
.0

4
2
8

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
b

in
ce

-l
o
g
it

s
si

g
m

o
id

0
.9

6
6
4

0
.0

9
4
7

0
.9

5
4
8

0
.1

3
1
7

0
.9

6
6
4

0
.0

9
4
7

0
.9

5
8
1

0
.1

2
1
1

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
m

se
si

g
m

o
id

0
.9

1
5
4

0
.1

0
6
3

0
.8

8
6
9

0
.1

3
5
5

0
.9

1
5
4

0
.1

0
6
3

0
.8

9
4
5

0
.1

2
9
2

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

m
se

ta
n

h
0
.8

8
8
6

0
.1

6
3
9

0
.8

5
9

0
.2

0
6
5

0
.8

8
8
6

0
.1

6
3
9

0
.8

6
1
9

0
.1

9
9
9

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

b
in

ce
si

g
m

o
id

0
.7

6
7
8

0
.2

3
8
9

0
.7

0
6
8

0
.2

7
7
5

0
.7

6
7
8

0
.2

3
8
9

0
.7

2
1
1

0
.2

7
1
3

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

m
se

si
g
m

o
id

0
.7

3
5
2

0
.2

0
5
6

0
.6

7
5
1

0
.2

3
9
7

0
.7

3
5
2

0
.2

0
5
6

0
.6

8
6
3

0
.2

3
5
8

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

b
in

ce
-l

o
g
it

s
si

g
m

o
id

0
.7

1
8
3

0
.1

6
8
5

0
.6

4
5
4

0
.2

0
2
8

0
.7

1
8
3

0
.1

6
8
5

0
.6

5
7
3

0
.2

0
1
5

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

b
in

ce
ta

n
h

0
.4

7
4
8

0
.1

9
0
5

0
.3

5
5
9

0
.2

0
4
4

0
.4

7
4
8

0
.1

9
0
5

0
.3

8
2

0
.2

0
5
2

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
ja

cc
a
rd

ta
n

h
0
.2

0
9
9

0
.2

2
2
1

0
.1

2
2
8

0
.2

1
7
9

0
.2

0
9
9

0
.2

2
2
1

0
.1

3
4
2

0
.2

2
4
9

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

m
a
n

h
a
tt

a
n

ta
n

h
0
.1

9
0
2

0
.0

7
3
4

0
.1

0
4
5

0
.0

6
9
8

0
.1

9
0
2

0
.0

7
3
4

0
.1

0
7
6

0
.0

6
6
1

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
b

in
ce

ta
n

h
0
.1

7
9
3

0
.2

5
1
7

0
.0

9
2
8

0
.2

6
2
1

0
.1

7
9
3

0
.2

5
1
7

0
.1

0
2
3

0
.2

6
6
1

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

ja
cc

a
rd

ta
n

h
0
.1

3
8
5

0
.0

6
9
6

0
.0

2
7
1

0
.0

3
1
1

0
.1

3
8
5

0
.0

6
9
6

0
.0

4
2
6

0
.0

4
4
1

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

m
a
n

h
a
tt

a
n

si
g
m

o
id

0
.1

0
1
2

0
.0

0
1
7

0
.0

1
0
2

0
.0

0
0
3

0
.1

0
1
2

0
.0

0
1
7

0
.0

1
8
6

0
.0

0
0
6

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
m

a
n

h
a
tt

a
n

ta
n

h
0
.1

0
0
7

0
.0

0
1
5

0
.0

1
0
1

0
.0

0
0
3

0
.1

0
0
7

0
.0

0
1
5

0
.0

1
8
4

0
.0

0
0
5

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
b

in
ce

-l
o
g
it

s
ta

n
h

0
.1

0
0
7

0
.0

0
1
3

0
.0

1
0
1

0
.0

0
0
3

0
.1

0
0
7

0
.0

0
1
3

0
.0

1
8
4

0
.0

0
0
5

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

b
in

ce
-l

o
g
it

s
ta

n
h

0
.1

0
0
4

0
.0

0
1
9

0
.0

1
0
1

0
.0

0
0
4

0
.1

0
0
4

0
.0

0
1
9

0
.0

1
8
3

0
.0

0
0
7

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
m

se
ta

n
h

0
.1

0
0
1

0
.0

0
1
8

0
.0

1
0
.0

0
0
4

0
.1

0
0
1

0
.0

0
1
8

0
.0

1
8
2

0
.0

0
0
6

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
m

a
n

h
a
tt

a
n

si
g
m

o
id

0
.0

9
9
1

0
.0

0
1
8

0
.0

0
9
8

0
.0

0
0
4

0
.0

9
9
1

0
.0

0
1
8

0
.0

1
7
9

0
.0

0
0
6

cl
a
ro

li
n

e-
ra

n
d

1
0

L
S

T
M

ja
cc

a
rd

si
g
m

o
id

0
.0

9
8
9

0
.0

0
1
6

0
.0

0
9
8

0
.0

0
0
3

0
.0

9
8
9

0
.0

0
1
6

0
.0

1
7
8

0
.0

0
0
5

cl
a
ro

li
n

e-
ra

n
d

1
0

G
R

U
ja

cc
a
rd

si
g
m

o
id

0
.0

9
8
3

0
.0

0
1
4

0
.0

0
9
7

0
.0

0
0
3

0
.0

9
8
3

0
.0

0
1
4

0
.0

1
7
6

0
.0

0
0
5

VaryMinions 47
T
a
b
le

8
:
R
es
u
lt
s
fo
r
d
a
ta
se
t
C
la
ro
li
n
e
D
is
si
m
il
a
r
5
0
:
A
v
er
a
g
ed

a
n
d
st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
d
iff
er
en
t
m
et
ri
cs

ov
er

1
0
ru
n
s.

E
a
ch

li
n
e
co
rr
es
p
on

d
s
to

a
p
ar
am

et
er
is
a
ti
o
n
o
f
a
R
N
N
.

D
a
ta

se
t

M
o
d
e
l

L
o
ss

A
c
ti
v
a
ti
o
n

A
c
c
u
r
a
c
y

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
S
c
o
r
e

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

b
in

ce
si

g
m

o
id

0
.8

0
0
1

0
.1

3
8
7

0
.7

6
3
1

0
.1

5
6
2

0
.8

0
0
1

0
.1

3
8
7

0
.7

6
0
3

0
.1

5
3
2

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

b
in

ce
-l

o
g
it

s
si

g
m

o
id

0
.7

8
3
3

0
.2

1
6
1

0
.7

3
6
7

0
.2

5
2
8

0
.7

8
3
3

0
.2

1
6
1

0
.7

4
0
3

0
.2

5
cl

a
ro

li
n

e-
d

is
5
0

G
R

U
b

in
ce

-l
o
g
it

s
si

g
m

o
id

0
.7

2
2
5

0
.3

8
1

0
.6

9
4
3

0
.3

8
3
4

0
.7

2
2
5

0
.3

8
1

0
.7

0
0
2

0
.3

8
4
8

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

m
se

ta
n

h
0
.6

2
1
1

0
.0

3
7
9

0
.5

2
2
1

0
.0

4
5

0
.6

2
1
1

0
.0

3
7
9

0
.5

3
7
3

0
.0

3
7
4

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
b

in
ce

si
g
m

o
id

0
.5

2
5
6

0
.4

4
5
9

0
.4

9
0
1

0
.4

4
0
8

0
.5

2
5
6

0
.4

4
5
9

0
.4

9
7
5

0
.4

4
4
2

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

m
se

si
g
m

o
id

0
.2

4
3
7

0
.2

5
0
.1

9
7

0
.2

2
3

0
.2

4
3
7

0
.2

5
0
.1

9
8
3

0
.2

2
2
6

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
m

se
si

g
m

o
id

0
.2

0
8
9

0
.2

1
5
3

0
.1

3
7
5

0
.1

6
1
7

0
.2

0
8
9

0
.2

1
5
3

0
.1

5
0
7

0
.1

7
4
7

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
b

in
ce

ta
n

h
0
.1

0
1
5

0
.2

2
5
3

0
.0

7
6
1

0
.2

2
3
1

0
.1

0
1
5

0
.2

2
5
3

0
.0

7
8
1

0
.2

2
5
7

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
ja

cc
a
rd

ta
n

h
0
.0

7
7
8

0
.0

3
8
6

0
.0

2
0
9

0
.0

2
1
7

0
.0

7
7
8

0
.0

3
8
6

0
.0

2
6

0
.0

2
5
1

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

ja
cc

a
rd

ta
n

h
0
.0

3
8
9

0
.0

1
3
1

0
.0

0
1
9

0
.0

0
1
1

0
.0

3
8
9

0
.0

1
3
1

0
.0

0
3
6

0
.0

0
2

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

ja
cc

a
rd

si
g
m

o
id

0
.0

2
7
3

0
.0

1
0
.0

0
1
3

0
.0

0
1
6

0
.0

2
7
3

0
.0

1
0
.0

0
2
4

0
.0

0
2
6

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
m

a
n

h
a
tt

a
n

si
g
m

o
id

0
.0

2
0
1

0
.0

0
0
3

0
.0

0
0
4

0
.0

0
.0

2
0
1

0
.0

0
0
3

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
m

a
n

h
a
tt

a
n

ta
n

h
0
.0

2
0
1

0
.0

0
0
8

0
.0

0
0
4

0
.0

0
0
1

0
.0

2
0
1

0
.0

0
0
8

0
.0

0
0
9

0
.0

0
0
2

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

b
in

ce
-l

o
g
it

s
ta

n
h

0
.0

2
0
1

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
.0

2
0
1

0
.0

0
0
4

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

m
a
n

h
a
tt

a
n

si
g
m

o
id

0
.0

2
0
1

0
.0

0
0
6

0
.0

0
0
4

0
.0

0
.0

2
0
1

0
.0

0
0
6

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
m

se
ta

n
h

0
.0

2
0
.0

0
0
4

0
.0

0
0
4

0
.0

0
.0

2
0
.0

0
0
4

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
b

in
ce

-l
o
g
it

s
ta

n
h

0
.0

2
0
.0

0
0
4

0
.0

0
0
4

0
.0

0
.0

2
0
.0

0
0
4

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

m
a
n

h
a
tt

a
n

ta
n

h
0
.0

1
9
9

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
.0

1
9
9

0
.0

0
0
4

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
d

is
5
0

G
R

U
ja

cc
a
rd

si
g
m

o
id

0
.0

1
9
2

0
.0

0
0
2

0
.0

0
0
4

0
.0

0
.0

1
9
2

0
.0

0
0
2

0
.0

0
0
7

0
.0

cl
a
ro

li
n

e-
d

is
5
0

L
S

T
M

b
in

ce
ta

n
h

0
.0

1
5
8

0
.0

0
7
8

0
.0

0
1

0
.0

0
0
9

0
.0

1
5
8

0
.0

0
7
8

0
.0

0
1
4

0
.0

0
1
2

48 Sophie Fortz et al.
T
ab

le
9:

R
es
u
lt
s
fo
r
d
at
as
et

C
la
ro
li
n
e
R
an

d
om

50
:
A
ve
ra
ge
d
an

d
st
an

d
ar
d
d
ev
ia
ti
on

s
of

d
iff
er
en
t
m
et
ri
cs

ov
er

10
ru
n
s.

E
ac
h
li
n
e

co
rr
es
p
on

d
s
to

a
p
ar
am

et
er
is
a
ti
o
n
o
f
a
R
N
N
.

D
a
ta

se
t

M
o
d
e
l

L
o
ss

A
c
ti
v
a
ti
o
n

A
c
c
u
r
a
c
y

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
S
c
o
r
e

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

A
v
g

S
d

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
b

in
ce

si
g
m

o
id

0
.9

5
6
2

0
.0

7
8
5

0
.9

4
4
2

0
.1

0
2
3

0
.9

5
6
2

0
.0

7
8
5

0
.9

4
7
5

0
.0

9
5
3

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
b

in
ce

-l
o
g
it

s
si

g
m

o
id

0
.9

4
9
8

0
.1

0
1
3

0
.9

3
6
8

0
.1

3
0
4

0
.9

4
9
8

0
.1

0
1
3

0
.9

3
9

0
.1

2
3
8

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

b
in

ce
-l

o
g
it

s
si

g
m

o
id

0
.9

1
9
7

0
.1

0
3
2

0
.9

0
8
5

0
.1

1
0
9

0
.9

1
9
7

0
.1

0
3
2

0
.9

0
4
1

0
.1

2
0
9

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

b
in

ce
si

g
m

o
id

0
.8

8
5
5

0
.0

9
3
6

0
.8

6
0
7

0
.1

1
7
5

0
.8

8
5
5

0
.0

9
3
6

0
.8

6
3
1

0
.1

1
0
6

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

m
se

si
g
m

o
id

0
.6

9
8

0
.2

2
1

0
.6

2
3
5

0
.2

4
8

0
.6

9
8

0
.2

2
1

0
.6

4
2
9

0
.2

4
2
1

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

m
se

ta
n

h
0
.6

1
3
6

0
.0

3
8
7

0
.5

0
7
7

0
.0

4
6

0
.6

1
3
6

0
.0

3
8
7

0
.5

2
8
9

0
.0

3
7
2

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
m

se
si

g
m

o
id

0
.5

8
5
2

0
.3

2
8
1

0
.5

1
8
6

0
.3

2
2

0
.5

8
5
2

0
.3

2
8
1

0
.5

3
3
1

0
.3

2
4

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
m

se
ta

n
h

0
.4

3
7
2

0
.2

8
8

0
.3

4
8
2

0
.2

4
0
2

0
.4

3
7
2

0
.2

8
8

0
.3

6
9
1

0
.2

5
4
4

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
b

in
ce

ta
n

h
0
.3

6
6
7

0
.1

1
0
6

0
.3

0
5
6

0
.1

0
6
3

0
.3

6
6
7

0
.1

1
0
6

0
.3

1
7
9

0
.1

0
4
1

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
ja

cc
a
rd

si
g
m

o
id

0
.2

6
2
3

0
.2

0
7
1

0
.1

7
7
3

0
.1

8
6

0
.2

6
2
3

0
.2

0
7
1

0
.1

9
2
3

0
.1

9
4
3

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

ja
cc

a
rd

si
g
m

o
id

0
.1

0
2
8

0
.0

8
1
1

0
.0

3
7
3

0
.0

4
6
7

0
.1

0
2
8

0
.0

8
1
1

0
.0

4
6
4

0
.0

5
4
6

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
ja

cc
a
rd

ta
n

h
0
.0

9
8
1

0
.0

2
2
4

0
.0

3
0
5

0
.0

1
6
6

0
.0

9
8
1

0
.0

2
2
4

0
.0

3
7
5

0
.0

1
8
5

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

ja
cc

a
rd

ta
n

h
0
.0

7
4
5

0
.0

2
8
2

0
.0

1
3
5

0
.0

2
1
5

0
.0

7
4
5

0
.0

2
8
2

0
.0

1
8
6

0
.0

2
2
7

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

b
in

ce
ta

n
h

0
.0

3
9
5

0
.0

2
6
2

0
.0

2
0
5

0
.0

2
4
7

0
.0

3
9
5

0
.0

2
6
2

0
.0

1
9
5

0
.0

2
5
8

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
m

a
n

h
a
tt

a
n

ta
n

h
0
.0

3
9
4

0
.0

0
9
4

0
.0

2
3
2

0
.0

1
4
6

0
.0

3
9
4

0
.0

0
9
4

0
.0

2
0
5

0
.0

0
9
5

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

m
a
n

h
a
tt

a
n

ta
n

h
0
.0

2
0
2

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
.0

2
0
2

0
.0

0
0
4

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

m
a
n

h
a
tt

a
n

si
g
m

o
id

0
.0

1
9
9

0
.0

0
0
3

0
.0

0
0
4

0
.0

0
.0

1
9
9

0
.0

0
0
3

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
b

in
ce

-l
o
g
it

s
ta

n
h

0
.0

1
9
8

0
.0

0
0
4

0
.0

0
0
7

0
.0

0
0
7

0
.0

1
9
8

0
.0

0
0
4

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
ra

n
d

5
0

L
S

T
M

b
in

ce
-l

o
g
it

s
ta

n
h

0
.0

1
9
8

0
.0

0
0
5

0
.0

0
0
4

0
.0

0
.0

1
9
8

0
.0

0
0
5

0
.0

0
0
8

0
.0

cl
a
ro

li
n

e-
ra

n
d

5
0

G
R

U
m

a
n

h
a
tt

a
n

si
g
m

o
id

0
.0

1
9
7

0
.0

0
0
6

0
.0

0
0
4

0
.0

0
.0

1
9
7

0
.0

0
0
6

0
.0

0
0
8

0
.0

	Introduction
	Background
	Motivation: Behaviour-driven VIS Reverse-engineering via Black-box Learning
	VaryMinions Overview
	Evaluation Protocol
	Evaluation Results
	Discussion and Future Work
	Related Work
	Conclusion
	Appendix 1

