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ABSTRACT
Background: Quantum computing is a rapidly growing new pro-
gramming paradigm that brings significant changes to the design
and implementation of algorithms. Understanding quantum algo-
rithms requires knowledge of physics and mathematics, which can
be challenging for software developers. Aims: In this work, we
provide a first analysis of how LLMs can support developers’ un-
derstanding of quantum code. Method: We empirically analyse
and compare the quality of explanations provided by three widely
adopted LLMs (Gpt3.5, Llama2, and Tinyllama) using two different
human-written prompt styles for seven state-of-the-art quantum
algorithms. We also analyse how consistent LLM explanations are
over multiple rounds and how LLMs can improve existing descrip-
tions of quantum algorithms. Results: Llama2 provides the highest
quality explanations from scratch, while Gpt3.5 emerged as the
LLM best suited to improve existing explanations. In addition, we
show that adding a small amount of context to the prompt signif-
icantly improves the quality of explanations. Finally, we observe
how explanations are qualitatively and syntactically consistent over
multiple rounds. Conclusions: This work highlights promising
results, and opens challenges for future research in the field of
LLMs for quantum code explanation. Future work includes refining
the methods through prompt optimisation and parsing of quantum
code explanations, as well as carrying out a systematic assessment
of the quality of explanations.

CCS CONCEPTS
• Computer systems organization → Quantum computing; •
Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Quantum computing is a multi-disciplinary field comprising com-
puter science, physics, and mathematics, which utilises quantum
mechanics to solve specific problems much faster than a classical
computer would do [17, 36]. Designing and implementing quan-
tum algorithms fundamentally differs from doing so for classical
algorithms. Developing quantum algorithms requires skills in math-
ematics and physics that software developers lack, which creates an
entry barrier for most developers interested in quantum computing.

Lowering this entry barrier should be a priority for the continu-
ously growing quantum software engineering community [46]. We
hypothesise that using large language models (LLMs) to generate
high-quality explanations of quantum programs can lower the entry
barrier for researchers or developers interested in quantum software
engineering. Thus, in this work, we investigate LLMs’s ability to
automatically generate explanations for quantum programs. Specif-
ically, we carry out an empirical study to investigate the ability of
three widely adopted LLMs (i.e., Gpt3.5, Llama2, and Tinyllama)
to generate explanations for seven state-of-the-art quantum algo-
rithms written in the OpenQSAM programming language [7] when
no context is given to the LLMs. In addition, we investigate whether
adding a small amount of context to the prompt improves the qual-
ity of explanations, and how consistent the generated explanations
are over multiple rounds of generation. Finally, we analyse the
ability of LLMs to improve existing descriptions of quantum algo-
rithms. All the explanations generated were manually rated by four
human-raters with different expertise in software engineering and
different degree of familiarity with quantum computing.
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According to the human-raters, Llama2 is the LLM providing
the best explanations when no context is provided, while Gpt3.5 is
better suited to improve already existing explanations. Furthermore,
we observe that providing the LLMs with a small amount of context
(i.e., just the name of the algorithm implemented and the number of
qubits employed) significantly improves the quality of explanations
for all the LLMs analysed herein. Finally, we found no difference
(both qualitative and syntactical) in explanations generated over
multiple rounds, thus proving a good level of stability of the LLMs
towards this task.

The promising results obtained in this preliminary analysis en-
courage further research on the use of LLMs’ explanations of quan-
tum code, including exploring prompt optimisation and conducting
a larger human-based evaluation.

The contributions of our work are as follows:

• To the best of our knowledge, this is the first work providing
insights on LLMs’ ability to explain quantum code;

• We detail future research directions in assessing and improv-
ing quantum code explanations;

• We provide the full replication package of our work, includ-
ing the quantum algorithms employed and the scripts to
generate explanations [9].

2 BACKGROUND AND MOTIVATION
Quantum programming is an emergent discipline born from recent
advancements in quantum mechanics. The era of quantum comput-
ing is still in its infancy, marked by the development of the first
quantum computers. Despite its early stage, software engineers are
increasingly recognising the potential of quantum computing, as
evidenced by the surge in quantum-related papers presented at re-
cent software engineering conferences [1, 2, 5, 10, 11, 22, 23, 28, 29].
However, the high entry barrier remains a significant obstacle to
popularising the field.

Fundamentally, a quantum program is a circuit where each wire
represents a bit or a qubit and employs two types of operators:
quantum gates andmeasurement operators. Quantum gates, usually
defined as matrices, perform operations on one or more qubits,
altering their states. Measurement operators, on the other hand,
extract the result of the quantum circuit and transform it into
classical bits that can be interpreted by conventional computers.

Physicists have provided tools to manipulate quantum infor-
mation, such as languages like OpenQASM. From a physicist’s
perspective, these tools fulfil the requirement, as software engi-
neers no longer need to manipulate physical qubits directly but can
use abstract representations consisting of logical qubits and gates.
However, from a software engineer’s viewpoint, these languages
may seem overly complex, resembling writing code solely with
logical circuits.

Despite these advancements, the field of quantum programming
still faces significant challenges, particularly in making the technol-
ogy accessible to a broader range of software engineers. Bridging
this gap requires not only the development of more intuitive pro-
gramming languages and tools but also employing comprehensive
resources to lower the entry barrier and foster wider adoption and
innovation in quantum computing.

This paper centres on the latter idea: employing resources to
diminish the entry barrier and catalyse wider adoption and inno-
vation in quantum computing. Since the release of ChatGPT in
November 2022, large language models (LLMs) have been assisting
developers and software engineers in several tasks. Among those,
code comprehension emerged as one of the tasks in which LLMs
have been mostly involved [15]. Hence, we believe that LLMs can
be a useful resource to help developers and software engineers
understand quantum code. However, as mentioned above, quantum
code can not be considered at the same level as traditional code,
still being more assembly-level style. Therefore, systematically as-
sessing the ability of LLMs to provide specific explanations for
quantum algorithms is still a challenge that has to be addressed.
This paper provides a first step in this direction: we engage three
LLMs to provide code explanations for seven quantum algorithms
using prompts providing different amounts of context and ask hu-
man raters to assess each explanation for correctness and potential
comprehension enhancement.

3 RELATEDWORK
LLMs have been used in previous work to explain different aspects
of code. For instance, Sarsa et al. [35] employ LLMs to generate
code explanations for educational purposes. Also focusing on ed-
ucation, MacNeil et al. [26] analyse how LLMs are able to explain
numerous aspects of a given code snippet and Sobania et al. [37]
empirically analyse the ability of LLMs to explain software patches.
Balfroid et al. [4] use ChatGPT to provide code tours for code on-
boarding i.e., the process of transitioning new employees into a
team’s methodology and tools. Leinonen et al. [21] use LLMs to
improve programming error messages. Concerning the integration
between LLMs and quantum code, Easttom [13] analyse the ability
of ChatGPT to generate and improve quantum algorithms. Guo et
al. [18] propose to use ChatGPT for automated quantum program
repair, while Ezratty highlights how LLMs can be employed in dif-
ferent aspects of Quantum Computing, such as learning, software
development or research [14]. However, to the best of our knowl-
edge, no work has yet attempted to analyse the ability of LLMs to
explain quantum code. Our work seeks to fill this gap providing
first results and shepherding the way for future research in this
field.

4 METHODOLOGY
In this section, we describe the methodology followed for our eval-
uation. We aim to answer the following research questions (RQs):
➤ RQ1: Do different LLMs generate quantum algorithm explanation
of different quality? This RQ focuses on assessing the overall quality
of the explanations generated by the LLMs and whether there is a
model that is more suited for explaining quantum code.
➤ RQ2: To what extend does adding context to the prompt impact
the explanation quality? This RQ investigates whether providing
an LLM with a prompt including some context (in our case, only
the name of the algorithm and the number of qubits are provided)
improves the overall quality of explanations.
➤ RQ3: How consistent are the LLM explanations over different runs?
Given the stochastic nature of LLMs [33], this RQ aims to assess
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if running a prompt multiple times leads to both qualitatively and
syntactically similar explanations.
➤ RQ4: Do different LLMs exhibit a different ability in improving
existing explanations for quantum code? Instead of explaining a
quantum algorithm from scratch, this RQ focuses on assessing how
able an LLM is to improve existing descriptions.

In the following, we first present the quantum algorithms em-
ployed in our evaluation. Then, we describe the process followed
to generate explanations from the LLMs. Finally, we report our the
evaluation process we followed to answer each RQ.

4.1 Evaluation Benchmark
For our evaluation, we employ seven quantum algorithms selected
from the MqtBench [31] benchmark written in the OpenQASM 3
programming language [8] for the Qiskit quantum compiler. The se-
lected algorithms are the following: Amplitude Estimation (AE): this
algorithm aims to find an estimation for the amplitude of a certain
quantum state [39]; Deutsch-Jozsa (DJ): this algorithm determines,
whether an unknown oracle mapping input values either to 0 or 1 is
constant (always output 1 or always 0) or balanced (both outputs are
equally likely) [6]; Grover : Grover’s algorithm finds a certain goal
quantum state determined by an oracle [24];Quantum Fourier Trans-
form (QFT): this algorithm embodies the quantum equivalent of the
discrete Fourier transformation [42]; Quantum Fourier Transform
with entanglement (QFT-ent): this algorithm is a variation of QFT to
entangled qubits; Quantum Phase Estimation (QPE): this algorithm
estimates the phase of a quantum operation [12]; Quantum Walk
(QW): the quantum equivalent to classical random walks [40]. The
rationale for the selection of these algorithms is twofold; they are
among the most popular quantum algorithms, and they are used in
other empirical studies [16]. Moreover, we adopted the OpenQASM
implementation of these algorithms instead of their Python ones to
better assess the ability of LLMs to explain algorithms written in
less common programming languages.

4.2 Generation of Code Explanations
We analyse explanations generated by using three different LLMs,
namely: Gpt3.5 turbo 16k, Llama2, and Tinyllama. We have chosen
Gpt3.5 and Llama2 because they are two of the most widely adopted
general-purpose LLMs. Moreover, we also analyse explanations
generated from Tinyllama to check if a smaller LLM is also able
to generate good-quality quantum code explanations. Concerning
Llama and Tinyllama, we adopt the implementations provided by
the ollama ecosystem with their default hyper-parameters,1 while
for Gpt3.5 we employ the model provided by the OpenAI API2
and, following a previous work about quality assessment of code
explanations from Gpt3.5 [37], we set its temperature to 0.8.

To generate the code explanations for RQ1, RQ2, and RQ3,
we feed each LLM with two different prompt styles: the first style,
which we call Non Context-Aware, does not provide any information
about the quantum code we feed as input:

"Can you give a high-level explanation of this code? <algorithm
code>"

1https://ollama.com/
2https://openai.com/index/openai-api/

The second style, which we call Context-Aware, includes a few
basic information about the quantum code feed as input, i.e., the
name of the algorithm implemented by the quantum code and the
number of qubits (this informationwas obtained from theMqtBench
benchmark):

"Can you give a high-level explanation of this code? <algorithm
code>. The name of the algorithm is: <algorithm name>. The code
includes <number of qubits> qubits"

The structure of the above prompts has been extensively dis-
cussed and agreed by all the authors of the paper. Note that we
ask the LLM to provide high-level explanations for both prompts
to assess better the LLM’s ability to understand an algorithm’s
behaviour instead of just describing each line of code.

Finally, to address the consistency of the explanations, following
the methodology employed in previous work [37], we repeated
the generation process three times for each LLM (3), quantum
algorithm (7), and prompt style (2) combination, yielding a total of
126 different explanations.

Concerning RQ4, we extract from the MqtBench repository a
short description for each quantum algorithm and ask the LLMs to
improve it using the following prompt:

"Can you improve the following explanation: <code explanation>
for the following quantum algorithm: <algorithm code> named:
<algorithm name> making it more informative but also keeping it
simple?"

Like the previous case, this prompt has been discussed and ap-
proved by all the authors. In this context, however, we perform only
one round of generation due to limited computational resources and
human-effort needed to rate multiple explanations. Future works
can investigate the consistency of description improvements over
multiple rounds of generation.

4.3 Evaluation Process and Metrics
After collecting the different explanations, four independent respon-
dents evaluate them. These are software engineers (SE) working in
quantum computing. We employed SE with knowledge of quantum
computing because they can provide a more reliable evaluation of
quantum explanations and are more able to detect errors in the
explanations compared with people with no expertise on the topic.
In particular, two of the evaluators reported 3-4 years of experience
in SE, while the other two have 5-10 years. As for the experience in
quantum computing, one respondent reported less than a year of
experience, two have 1-2 years, and one has 3-4 years, highlighting
a heterogeneous group of raters.

We asked them to give a score from 1 to 5 for each explanation
for each quantum algorithm, where 1 means an entirely wrong ex-
planation, while 5 indicates a high-quality explanation. To help the
evaluators assess the correctness and quality of each explanation,
we provided them with the source code of each algorithm and the
one-line description of the algorithm, as given by MqtBench [31].

To avoid potential bias during the human evaluation, we anonymise
the LLM and prompt style used to generate the explanations for
each quantum algorithm. Hence, concerning RQ1, RQ2, and RQ3,
for each quantum algorithm, the human-raters had to evaluate 18
different explanations (i.e., explanations from 3 LLMs × 2 prompts
styles × 3 runs) without knowing the LLM and prompt style that

https://ollama.com/
https://openai.com/index/openai-api/
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generated them. For the RQ4, the raters had to evaluate three ex-
planations (one for each LLM) for each quantum algorithm.

After collecting the evaluations, we performed the following
steps to answer each RQ. First, for each explanation, we compute
the mean among the scores given by each evaluator. Next, to an-
swer the RQ1, we compare the mean and median scores of all
explanations generated from each LLM. In addition, we perform
the non-parametric Wilcoxon signed-ranked test [45] to assess if
there is a statistically significant difference among the scores of
each LLM. We adopt this test because the experiment follows a one
factor with two treatments paired comparison design (i.e., all multi-
ple subjects evaluate all different treatments) [44]. Moreover, we
perform this test instead of the parametric Paired t test [19] because
the data does not follow a normal distribution, as confirmed by the
Shapiro-Wilk test for normality [32]. This same evaluation process
has also been performed to evaluate LLM improved explanations
to assess the RQ4.

To answer the RQ2, we compare the mean and median scores
of all explanations generated by each LLM using the Non Context-
aware and Context-aware prompt styles. As done for the RQ1, we
employ theWilcoxon signed-ranked test to assess if, for each LLM,
there is a statistically significant difference in the scores of explana-
tions obtained using Context-aware and Non context-aware styles.

To answer the RQ3, we evaluate both the qualitative and syn-
tactical similarity of explanations generated by each LLM over
multiple rounds. To assess the qualitative similarity, we compare
the mean and median scores of explanations obtained by an LLM
with a given prompt style over multiple rounds. We also employ the
non-parametric Kruscal-Wallis H test [27] to assess if there is a sta-
tistically significant difference in the scores obtained over multiple
rounds. Again, we adopt this test instead of the parametric ANOVA
[38] since the data does not follow a normal distribution. To assess
the syntactical similarity, we compute the cosine similarity among
the explanations generated for the same algorithm over multiple
rounds of the same LLMwith a specific prompt style. Cosine similar-
ity is a widely adopted metric in the Natural Language Processing
and Information Retrieval domains, which measures the similar-
ity of two documents as the cosine of their term-frequency vector
representation [34]. This metric ranges from 0 to 1, where 0 means
that two documents are entirely different, while 1 means that two
documents are syntactically identical. Since we repeated the gen-
eration process three times, we report the mean cosine similarity
among the three documents.

Following standard practices [3, 44], we consider a statistical
test significant if its p-value is < 0.05. However, since we perform
multiple hypothesis testing for each RQ (3 tests for RQ1, RQ2
and RQ4 and 6 tests for RQ3), we apply the Bonferroni correction
[43] and consider a test significant if its p-value is < 0.05/3 for
RQ1, RQ2 and RQ4 and < 0.05/6 for RQ3. In addition, following
the standard guidelines in [41], we support the obtained p-values
for RQ1, RQ2 and RQ4 with the Cliff’s 𝛿 effect size to assess the
difference magnitude [25].

To assess the reliability of human evaluation scores, we use the
Krippendorff’s 𝛼 inter-rater agreement metric, defined as:

𝛼 =
𝑝𝑎 − 𝑝𝑒

1 − 𝑝𝑒

Table 1: Mean and median explanation scores for each LLM.

Gpt3.5 Llama2 Tinyllama

Mean 2.50 2.78 1.87
Median 2.50 2.75 1.86

Table 2: Statistic and Bonferroni corrected p-value of the
Wilcoxon test and Cliff’s 𝛿 among LLM explanation scores.

W Stat p-value 𝛿

Gpt3.5 - Llama2 141.50 0.02 -0.18
Gpt3.5 - Tinyllama 53.50 3.07 ∗ 10−5 0.44
Llama2 - Tinyllama 38.00 1.01 ∗ 10−6 0.52

where 𝑝𝑎 represents the observed weighted percentage agreement
(i.e., how often the reviewers actually agreed) and 𝑝𝑒 represents
the chance weighted percentage agreement (i.e., the percentage
agreement the raters would achieve with random scores) [20]. This
metric ranges from -1 to 1, where -1 indicates a systematic dis-
agreement, 0 means random guessing, and 1 means total agreement
among the evaluators. We adopted this metric despite other widely
adopted inter-rater agreement metrics like Cohen’s 𝜅 because it en-
ables the comparison of more than two raters and handles interval
ratings (i.e., Likert scale evaluations).

5 RESULTS
In the following, we report the results for our RQs. Concerning the
reliability of the human evaluations, the Krippendorff’s 𝛼 reported
an inter-rater agreement of 0.47 for the evaluation conducted to
answer RQ1, RQ2, RQ3, and a result of 0.9 in the evaluation con-
ducted to answer RQ4, highlighting an overall positive agreement
among the respondents.

5.1 RQ1: LLM-Driven Quantum Explanations
Table 1 reports the mean and median scores of explanations ob-
tained by each LLM, while Table 2 reports the statistics and the
Bonferroni corrected p-value of the Wilcoxon test and the Cliff’s
𝛿 between each LLM pair. It can be observed from Table 1 how
Llama2 is the LLM obtaining the highest evaluation score with a
mean of 2.78 and a median of 2.75. Gpt3.5 reports instead an average
evaluation score of 2.5, which is close to Llama2, as confirmed by a
small effect size but still statistically significant, as shown in Table
2. Concerning Tinyllama, we observe instead a lower mean (1.87)
and median (1.86) scores compared with both Gpt3.5 and Llama2.
This difference is also confirmed by a lower p-value of theWilcoxon
test and a greater effect size.

Figure 1 reports the distribution of explanation scores for each
LLM. While we observe a quite similar distribution of scores be-
tween Gpt3.5 and Llama2, Tinyllama reports a significantly higher
amount of 1.0 scores compared with the other LLMs, meaning that
many explanations from Tinyllama were systematically wrong.

Answer to RQ1: Llama2 emerged as the LLM that provides
better explanations. On the other side, Tinyllama provides many



Exploring LLM-Driven Explanations for Quantum Algorithms ESEM ’24, October 24–25, 2024, Barcelona, Spain

0 25 50 75 100 125 150 175
Count

Gpt3.5

Llama2

Tinyllama

Score
5.0
4.0
3.0
2.0
1.0

Figure 1: Distribution of explanation scores for each LLM

Table 3: Mean and median values, Wilcoxon test and Cliff’s 𝛿
between scores of explanations obtained with Context-aware
and Non context-aware prompt styles

Non context-aware Context-aware W Stat p-value 𝛿

Mean Median Mean Median

Gpt3.5 1.86 1.75 3.14 3.25 0.00 2.86 ∗ 10−6 -0.98
Llama2 2.02 2.00 3.54 3.75 2.00 8.58 ∗ 10−6 -0.89
Tinyllama 1.36 1.25 2.38 2.25 1.50 3.21 ∗ 10−4 -0.77

0 20 40 60 80
Number of scores

Gpt3.5 Non Aw.
Gpt3.5 Aw.

Llama2 Non Aw.
Llama2 Aw.

Tiny Non Aw.
Tiny Aw.

Score
5.0
4.0
3.0
2.0
1.0

Figure 2: Score distribution for each LLM and prompt style.

explanations that are systematically wrong comparedwith the other
LLMs.

5.2 RQ2: Context-Aware Prompts
Table 3 reports the mean and median values and the results of
Wilcoxon test and Cliff’s 𝛿 between the scores of explanations ob-
tained with Non context-aware and Context-aware prompt styles.
From the table, we observe how adding basic information to the
prompt (i.e., the name of the algorithm implemented and the num-
ber of qubits employed) significantly improves the quality of the
explanations in all LLMs.

The higher quality of explanations obtained from a Context-
aware prompt style is also confirmed by the distribution of scores
shown in Figure 2. From the figure, we observe how the proportion
of explanations with a low score (i.e., 1 or 2) significantly decreases,
especially in Gpt3.5 and Llama2.

Answer to RQ2: Adding basic information like the name of
the algorithm implemented or the number of qubits employed sig-
nificantly improves the quality of explanations for all the LLMs
employed.

Table 4: Mean and median values and Kruscall-Wallis H test
result between scores of explanations obtained over three
generation rounds for each LLM.

Non context-aware Context-aware

Mean Median H Stat p-value Mean Median H Stat p-value

Gpt3.5
Round 1 2.04 2.00

3.56 1.01
3.32 3.50

2.48 1.74Round 2 1.71 1.75 2.93 2.75
Round 3 1.82 1.75 3.18 3.25

Llama2
Round 1 2.07 2.00

1.33 3.08
3.43 3.75

5.05 0.48Round 2 2.07 2.00 3.96 4.00
Round 3 1.93 2.00 3.21 3.25

Tinyllama
Round 1 1.43 1.25

1.44 2.91
2.36 2.25

0.28 5.21Round 2 1.39 1.25 2.32 2.75
Round 3 1.25 1.00 2.46 2.75
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Figure 3: Distribution of cosine similarity of explanations
obtained by each LLM with specific prompt style over three
generation rounds.

5.3 RQ3: Explanation Consistency
We assess the similarity of explanations from both a qualitative (i.e.,
if there is a difference in the quality of explanations) and syntactical
(i.e., if the explanations are written differently) point of view.

Concerning qualitative similarity, Table 4 reports the mean and
median scores and the Kruskall-Wallis H test result of explanations
obtained from three generation rounds of each LLM with a given
prompt style. We observe an overall not significant difference in
the scores, especially using a Non context-aware prompt style. The
difference in scores is also emphasised by an overall high p-value
of the H test, which does not let us reject the null hypothesis of
equal medians among the groups.

Concerning syntactic similarity, Figure 3 reports the distribution
of cosine similarity scores among each algorithm’s explanation
over three generation rounds for each LLM and prompt style pair.
We observe how explanations from Gpt3.5 and Llama2 have a high
similarity score despite the adopted prompt style (with median
scores ranging between 0.7 and 0.8). A lower similarity score is
instead observed for Tinyllama, which can be partially explained
by the randomness of some explanations returned by the model.

Answer to RQ3: Explanations returned by the LLMs over dif-
ferent rounds are overall similar from a qualitative point of view.
Concerning the syntactical similarity, Gpt3.5 and Llama2 return
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Table 5: Mean and median scores of improved explanations.

Gpt3.5 Llama2 Tinyllama

Mean 3.54 2.39 1.89
Median 4.50 2.25 1.50

similar explanations, while more variability is observed in the ex-
planations from Tinyllama.

5.4 RQ4: Quantum Explanation Completion
Table 5 reports the mean and median scores of LLM improved
explanations. We notice that Gpt3.5 performs better then the others.
However, the results of the Wilcoxon test do not allow us to reject
the null hypothesis that the distribution of scores is the same for all
LLMs, providing p-values > 0.05/3 for all comparisons (i.e., 0.375 in
the comparison between Gpt3.5 and Llama2, 0.297 between Gpt3.5
and Tinyllama, and 0.247 between Llama2 and Tinyllama). This
result may be due to the small dimension of samples (i.e., 7 scores
for each LLM) which may lead us to the Type II statistical error (i.e.,
accept the null hypothesis when it should be rejected) [44].

Answer toRQ4:Gpt3.5 emerges as the LLMperforming better in
improving existing explanations. However, further research should
be conducted to better explore the capabilities of LLMs in improving
existing quantum explanations.

6 THREATS TO VALIDITY
Internal Validity: It is worth noting that our panel of experts
possesses some background knowledge in quantum programming,
which may appear counter-intuitive to our initial hypothesis of
analysing the ability of LLMs to explain quantum code to non-
expert software engineers. Nevertheless, we argue that error-free
explanations hold greater value. Consequently, in this preliminary
evaluation, soliciting evaluations from individuals lacking quantum
knowledge might bias results toward superficial aspects, potentially
leading to erroneous conclusions. Additionally, all our human-raters
boast software engineering backgrounds and have recently tran-
sitioned into the realm of quantum computing (see demographic
description in Section 4). Thus, they acknowledge their ongoing
learning curve in this domain and recognise the utility of such a
tool, notwithstanding their ability to discern basic errors. This cri-
terion may be relaxed in the future once our methodology matures,
enabling us to pre-select accurate explanations for a comprehen-
sive user study. In addition, the quality of each explanation has
been evaluated using a single question system, which may not be
best suited given the multi-faced definitions of quality. We plan to
extend our analysis with a more structured evaluation system in
future works.

Construct Validity: The quality assessment of each explana-
tion is based on a subjective evaluation, and it may differ among
evaluators. To mitigate this threat, we employed the Krippendorff’s
𝛼 inter-rater agreement score, which reported an overall positive
agreement among the evaluators.

Conclusion Validity: The results of RQ4 have a low statistical
significance. This may be due to the small data sample employed in

this RQ, which may lead to a Type II statistical error (i.e., refusing
to reject the null hypothesis when it should be rejected).

External Validity: Our analysis focuses on a limited set of
LLMs and quantum algorithms, and the results may not hold for
other settings. To mitigate this, we consider widely adopted LLMs
and state-of-the-art quantum algorithms. In addition, the results of
our analysis are limited to algorithms written in the OpenQASM
3 programming language, while the adoption of higher-level pro-
gramming languages (like Qiskit, Silq, or Q#) may lead to different
results.

7 CONCLUSION AND FUTURE DIRECTIONS
This evaluation has provided valuable insights into the capability of
LLMs to explain quantum code, highlighting that both GPT3.5 and
Llama2 are suitable for this task. Our findings show that including
a small amount of context in the prompt significantly enhances the
quality of explanations. Additionally, the explanations generated by
the LLMs remain qualitatively and syntactically consistent across
multiple iterations. However, further work is required to analyse
and improve LLMs’ ability to explain quantum code comprehen-
sively. None of the LLMs achieved an average high score (i.e., 4
or higher) in generating explanations from scratch without prior
context provided in the prompt. While evaluators generally agreed
positively on the quality of the explanations, the inter-agreement 𝛼
score of 0.47 underscores the need for a more systematic approach
to evaluating quantum explanations (e.g., following the guidelines
outlined in [30]). Furthermore, despite existing studies on the qual-
ity of LLMs’ explanations for various aspects of traditional code
(see Section 3), special attention should be devoted to quantum
code. The use of logical qubits and quantum gates is not intuitive
for software engineers, and writing algorithms using logical cir-
cuits can be cumbersome. This makes quantum code significantly
different from classical code and necessitates a unique approach to
explanation, as discussed in Section 2.

Given these observations, several future research directions
emerge. Future work could expand the analysis of GPT3.5 and
Llama2 explanations by developing more systematic guidelines for
assessing the quality of quantum explanations, involving individu-
als with varying expertise in both software engineering and quan-
tum computing and employing less-known quantum algorithms.
Research should also focus on prompt optimisation for quantum
code explanation, determining the minimum amount of context
required in the prompt to achieve high-quality explanations. The
question of determinism also arises, warranting experiments ex-
ploring different temperature settings to observe their impact on
the results, especially concerning their consistency over multiple
rounds. Additionally, exploring more language models (like GPT4
or Llama3) to investigate their efficiency and efficacy will help iden-
tify the best-fitting architecture for this task. Finally, an interesting
avenue for further optimisation is response parsing. Implement-
ing a parser to structure the explanations provided by the LLMs
can significantly enhance the clarity of these explanations for new
users.
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