
Sophie Fortz, Postdoctoral Researcher
Q sophie.fortz@kcl.ac.uk
7 @FortzSophie
� https://sfortz.github.io/
� https://orcid.org/0000-0001-9687-8587

The long term goal of my research is to enhance software reliability through the automation of
verification and validation tasks. Leveraging my expertise in behavioural inference, I aim to design
model-based approaches tailored for complex systems such as variability-intensive, quantum, and
AI-based software.
During my Ph.D. at the University of Namur, I inferred behavioural models for variability-intensive
systems, i.e., Featured Transition Systems. This research builds bridges between software product lines,
automata learning, and deep learning research communities. This Ph.D. was partly funded by the FNRS
EoS (Excellence of Science) VeriLearn project, before I obtained a FRIA (FNRS) Grant. In November
2023, I joined King’s College London as a postdoctoral researcher on the VSL-Q project. Our mission
within this project is to provide verified simulations for large-scale quantum systems, tackling practical
challenges such as platform specificities, noise, and scalability. This collaborative effort brings together
experts from diverse fields including physics, programming languages, and software engineering.

Research Interests

Software Variability 	 Software product line engineering, configurable processes, variability-
intensive system behaviour, featured transition systems, variability mining.

Automata Learning 	 Active automata learning, behavioural model learning, software reverse
engineering.

Quantum Computing 	 Quantum computing, verified software, high-level modelling.

Artificial Intelligence 	 Deep Learning, symbolic AI, AI for SE, SE for AI.

Employment History

Nov. 2023 – Ongoing 	 Postdoctoral Researcher. Software Systems group, Faculty of Depart-
ment of Informatics, Faculty of Natural, Mathematical & Engineering
Sciences, King’s College London, United Kingdom.

Oct. 2023 – Nov. 2023 	 Postdoctoral Researcher. PRECISE, NaDi, Faculty of Computer Sci-
ence, University of Namur, Belgium.

Oct. 2020 – Sept. 2023 	 PhD Student under FRIA Grant (FRS-FNRS). PRECISE, NaDi, Fac-
ulty of Computer Science, University of Namur, Belgium.

Sept. 2019 – Sept. 2020 	 PhD Student. PRECISE, NaDi, Faculty of Computer Science, Univer-
sity of Namur, Belgium.

https://sfortz.github.io/
https://orcid.org/0000-0001-9687-8587


Education

2019 – 2023 	 Ph.D. in Software Engineering.
Thesis title: Learning Featured Transition Systems. Supervisors: Dr. Gilles Perrouin &
Prof. Patrick Heymans. University of Namur, Namur, Belgium.

2017 – 2019 	 M.Sc. Computer Science. (Magna Cum Laude).
Software Engineering specialty. Thesis title: SAT-Based Concolic Testing in Prolog.
Supervisors: Prof. Wim Vanhoof. University of Namur, Namur, Belgium.

2014 – 2017 	 B.Sc. Computer Science.) (Cum Laude).
Mathematics and English options, University of Namur, Namur, Belgium.

Teaching

2019-2023 	 Software Testing: project supervision, MSc Level, ± 15 students, University of
Namur.

2019–2022 	 Mathematics Fundamentals for Computer Science: exercise sessions on recurrent
equations and cryptography basics, BSc Level, 2×± 40 students, University of Namur.

2020-2021 	 Introduction to the Scientific Approach: one group project supervision, 2021, BSc
Level, 2 students, University of Namur.

Community Service

Program Committees 	 ECOOP: European Conference on Object-Oriented Programming
(Artefacts), 2024.

	 SPLC: ACM Software Product Line Conference (Main track, Publi-
city Chair), 2024.

	 ESEC-FSE: ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering
(Artefacts), 2023.

	 SPLC: ACM Software Product Line Conference (Demonstration &
Tools), 2023.

Journal Reviewing 	 SoSyM: International Journal on Software and Systems Modeling.
Publisher: Springer.

	 SQJ: Software Quality Journal. Publisher: Springer.

	 EMSE: Empirical Software Engineering (as a sub-reviewer). Pub-
lisher: Springer.

Other Community Services 	 Master Thesis Juries: Member of several juries for master thesis;



Community Service (continued)

	 Computer Science Faculty Council: Student representative, then
scientific representative.

	 Students Fairs: Representing and promoting the Computer Science
Faculty at several Students Fairs;

Recent Projects

VSL-Q 	 Verified Simulation for Large Quantum Systems. This is the current project I
am working on, as a postdoctoral researcher at King’s College. The project brings
together researchers from software engineering, programming language and physics.
2023–2025. Partners: Kings College London (coordinator), University of Oxford.
Keywords: Quantum Computing, Verified Software, High-level Modelling.

LIFTS 	 Learning Featured Transition Systems. Competitive FRIA Grant obtained for my
PhD. Funded by the FRS-FNRS, 2019–2023. Keywords: Featured Transition Systems,
Automata Learning, Deep Learning.

VeriLearn 	 Verifying systems that learn. I work on this project for over a year, first as a Ph.D.
student, then as a postdoctoral researcher. Excellence of Science (EoS) project, 2018–
2023. Partners: KUL (coordinator), UNamur, ULB. Keywords: Machine Learning,
Testing, Modelling.

Miscellaneous Experience

2019-2023 	 ALMIN board member and president, University of Namur, Belgium. The
ALMIN is the alumni association of the computer science faculty in the university of
Namur. This group organise activities for all the master and bachelor students who
got their degree in the faculty. I am a board member of the association since 2019
and in 2021, I took the presidence.

2019 	 Research internship, Department of Computer Systems and Computation, Poly-
technic University of Valencia, Spain. During my master thesis, I have done three
months of research at the polytechnic university of Valencia (Spain), under the super-
vision of Prof. German Vidal. My work on concolic testing for logic programming
was nominated for the Jean Fichefet award (best master thesis award).

2017 – 2019 	 CSLabs secretary and board member, Computer Science Labs (CSLabs), Namur,
Belgium. CSLabs is a non-profit organisation founded by students from Unamur’s
Faculty of Computer Science, in order to promote computer science externally and
provide trainings in different fields by and for students.

Languages

French 	 Native (mother tongue).

English 	 B2-level (score of 72 on the Pearson PTE Academic test, 2023).



Languages (continued)

Dutch 	 Basic knowledge.

French Belgian Sign Language 	 Basic knowledge.

Ph.D. Thesis

Title 	 Learning Featured Transition Systems Learning Featured Transition Systems

Supervisors 	 Dr. Gilles Perrouin and Prof. Dr. Patrick Heymans

Year 	 2023

Abstract 	 Variability-intensive Systems (VISs) are software-based systems whose characteristics
and behaviour can be modified by the activation or deactivation of some options.
Addressing variability proactively during software engineering (SE) activities means
shifting from reasoning on individual systems to reasoning on families of systems. Adopt-
ing appropriate variability management techniques can yield important economies of
scale and quality improvements. Conversely, variability can also be a curse, especially
for Quality Assurance (QA), i.e., verification and testing of such systems, due to the
combinatorial explosion of the number of software variants. Indeed, by combining
only 33 Boolean options, we can define more variants of a system than the number of
people on Earth. Verifying or testing each variant individually is thus impossible in
most practical cases.
About a decade ago, Featured Transition Systems (FTSs) were introduced as a formalism
to represent, and reason on, the behaviour of VISs. Instead of representing each variant
by a (classical) transition system, an FTS bears annotations that relate transitions to
options through feature expressions. FTSs thus make it possible to reason at the family
level by modelling all the variants of a system in a single behavioural model. FTSs
have been shown to significantly improve the possibilities and execution time of
automated QA activities such as model-checking and model-based testing. They
have also shown their usefulness to guide design exploration activities. Yet, as most
model-based approaches, FTS modelling requires both strong human expertise and
significant effort that would be unaffordable in many cases, in particular for large legacy
systems with outdated specifications and/or systems that evolve continuously.
Therefore, this thesis aims to automatically learn FTSs from existing artefacts, to ease
the burden of modelling FTS and support continuous QA activities. To answer
this research challenge, we propose a two-phase approach. First, we rely on deep
learning techniques to locate variability from execution traces. For this purpose,
we implemented a tool called VaryMinions. Then, we use these annotated traces
to learn an FTS. In this second part, we adapt the seminal L∗ algorithm to learn
behavioural variability. Both frameworks are open-source and we evaluated them
separately on several datasets of different sizes and origins (e.g., software product lines
and configurable business processes).

Keywords 	 Variability-intensive Systems, Software Product Line, Featured Transition Systems,
Reverse Engineering, Active Automata Learning, Variability Mining



Master Thesis

Title 	 SAT-Based Concolic Testing in Prolog

Supervisor 	 Prof. Dr. Wim Vanhoof

Year 	 2019

Abstract 	 Concolic testing has been studied for years in the field of imperative programming.
However, we can only find a very few cases where this technique is applied to other
paradigms, like logic programming. This master thesis aims at presenting a full method
to apply both concrete and symbolic execution in parallel on Prolog programs. Our
approach is based on a new definition of path coverage, specific to logic programming
and called ”choice coverage”. This criteria was defined for the first time by Mesnard
et al. (2015). We also introduce a prototype implementation of our algorithm.

Keywords 	 Concolic execution, symbolic execution, software testing, choice coverage, Prolog,
logic programming.

Publications

1 Fortz, S., Temple, P., Devroey, X., & Perrouin, G. (2024). Towards feature-based ML-enabled
behaviour location. Proceedings of the 18th International Working Conference on Variability Modelling
of Software-Intensive Systems (VaMoS).

2 Fortz, S. (2023). Variability-aware behavioural learning. Proceedings of the 27th ACM International
Systems and Software Product Line Conference (SPLC) - Volume B, 11–15.

3 dos Santos, E. L., Fortz, S., Schobbens, P., & Perrouin, G. (2022). Identifying architectural smells
in self-adaptive systems at runtime. 13ème édition de la Conférence francophone sur les Architectures
Logicielles (CAL).

4 dos Santos, E. L., Fortz, S., Perrouin, G., & Schobbens, P. (2021). A vision to identify
architectural smells in self-adaptive systems using behavioral maps. 4th Context-aware, Autonomous
and Smart Architectures International Workshop (CASA@ECSA), 2978.

5 dos Santos, E. L., Fortz, S., Schobbens, P., & Perrouin, G. (2021). Behavioral maps: Identifying
architectural smells in self-adaptive systems at runtime. Software Architecture, 13365, 159–180.

6 Fortz, S. (2021). LIFTS: learning featured transition systems. Proceedings of the 25th ACM
International Systems and Software Product Line Conference (SPLC) - Volume B, 1–6.

7 Fortz, S., Temple, P., Devroey, X., Heymans, P., & Perrouin, G. (2021). VaryMinions:
Leveraging RNNs to identify variants in event logs. Proceedings of the 5th International Workshop on
Machine Learning Techniques for Software Quality Evolution (MaLTeSQuE@ESEC/FSE), 13–18.

8 Fortz, S., Mesnard, F., Payet, É., Perrouin, G., Vanhoof, W., & Vidal, G. (2020). An SMT-based
concolic testing tool for logic programs. 15th International Symposium on Functional and Logic
Programming (FLOPS), 12073, 215–219.

Bibliometrics



Total Number of Publications: 8
Total Number of Citations: 18
H-index (Google Scholar): 3

See https://scholar.google.co.uk/citations?user=cfV6X6kAAAAJ for the full list of publications.

https://scholar.google.co.uk/citations?user=cfV6X6kAAAAJ

